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Application Resolution Frame rate MPixels / sec

Desktop game 1920 x 1080 x 1 60 124
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Application Resolution Frame rate MPixels / sec

Desktop game 1920 x 1080 x 1 60 124

2018 VR

(HTC Vive PRO)
1440 x 1600 x 2 90 414
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* Data from Siggraph Asia 2016, Prediction by Michael Abrash, October 2016

Application Resolution Frame rate MPixels / sec

Desktop game 1920 x 1080 x 1 60 124

2018 VR

(HTC Vive PRO)
1440 x 1600 x 2 90 414

2020 VR * 4000 x 4000 x 2 90 2,880
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• Virtual reality is a challenging workload 
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• Virtual reality is a challenging workload 

• Most VR pixels are peripheral
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fovea:

the center of the retina

corresponds to the center of the vision field



• Virtual reality is a challenging workload 

• Most VR pixels are peripheral
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foveal region:

the human eye detects significant detail

peripheral region:

the human eye detects little high fidelity detail



• Virtual reality is a challenging workload 

• Most VR pixels are peripheral
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foveal region:

the human eye detects significant detail

peripheral region:

the human eye detects little high fidelity detail
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• Virtual reality is a challenging workload 

• Most VR pixels are peripheral
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* Data from Siggraph 2017, by Anjul Patney, August 2017
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Foveated Rendering



• Virtual reality is a challenging workload 

• Most VR pixels are peripheral

• Eye tracking technology available
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Related Work
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Full Resolution
𝟏

𝟐
Resolution

𝟏

𝟒
Resolution

Multi-Pass Foveated Rendering [Guenter et al. 2012]
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Rasterizer

Early Z

𝑇𝑥 × 𝑇𝑦
Tile Buffer

Generate 

Coarse Quad

Shade

Evaluate Coarse 

Pixel Size

Input primitives

Coarse Pixel Shading (CPS) [Vaidyanathan et al. 2014]
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CPS with TAA & Contrast Preservation [Patney et al. 2016]
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Can we change the resolution gradually?
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Perceptual Foveated Rendering [Stengel et al. 2016]
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Is there a foveated rendering approach

without

the expensive pixel interpolation?
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𝑥

𝑣

𝑢

Log-polar mapping [Araujo and Dias 1996]

𝑢 =
log 𝑥2 + 𝑦2

𝐿
∙ 𝑤

𝑣 =
(arctan

𝑦
𝑥
+ 𝟏 [𝑦 − 0] ∙ 2𝜋)

2𝜋
∙ ℎ

• 𝑊: 𝑠𝑐𝑟𝑒𝑒𝑛 𝑤𝑖𝑑𝑡ℎ 𝐻: 𝑠𝑐𝑟𝑒𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 𝑤: 𝑏𝑢𝑓𝑓𝑒𝑟 𝑤𝑖𝑑𝑡ℎ ℎ: 𝑏𝑢𝑓𝑓𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

• 𝟏 𝑦 < 0 = ቊ
1 𝑦 < 0
0 𝑦 > 0

• 𝐿 = log 𝑊2 + 𝐻2

Log-polar Mapping

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(𝑢, 𝑣)

𝑢

𝑣

𝐿

2𝜋

(𝑥0, 𝑦0)

(𝑥0, 𝑦0)

𝑂
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Log-polar mapping [Araujo and Dias 1996]

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(u, 𝑣)
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Log-polar mapping [Araujo and Dias 1996]

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(𝑢, 𝑣)

22

Introduction Related Work Our Approach User Study Experiments Conclusion

𝑢 =
log 𝑥2 + 𝑦2

𝐿
∙ 𝑤

𝑣 =
(arctan

𝑦
𝑥
+ 𝟏 [𝑦 − 0] ∙ 2𝜋)

2𝜋
∙ ℎ

• 𝑊: 𝑠𝑐𝑟𝑒𝑒𝑛 𝑤𝑖𝑑𝑡ℎ 𝐻: 𝑠𝑐𝑟𝑒𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 𝑤: 𝑏𝑢𝑓𝑓𝑒𝑟 𝑤𝑖𝑑𝑡ℎ ℎ: 𝑏𝑢𝑓𝑓𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

• 𝟏 𝑦 < 0 = ቊ
1 𝑦 < 0
0 𝑦 > 0

• 𝐿 = log 𝑊2 + 𝐻2

Log-polar Mapping



Log-polar mapping [Araujo and Dias 1996]
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Log-polar Mapping

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(𝑢, 𝑣)
Cartesian coordinates

(𝑥, 𝑦)
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Log-polar mapping [Araujo and Dias 1996]

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(𝑢, 𝑣)
Cartesian coordinates

(𝑥, 𝑦)
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Log-polar mapping [Araujo and Dias 1996]

Cartesian coordinates

(𝑥, 𝑦)
Log-polar coordinates

(𝑢, 𝑣)
Cartesian coordinates

(𝑥, 𝑦)
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Log-polar mapping [Araujo and Dias 1996]
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Log-polar Mapping for 2D Image [Antonelli et al. 2015]
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Log-polar Mapping for 2D Image
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Our Approach
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Kernel Log-polar Mapping

𝑢 = 𝐾−1
𝑙𝑜𝑔 𝑥2 + 𝑦2

𝐿
∙ 𝑤

𝐾 𝑥 = 𝑥 𝐾 𝑥 = 𝑥2 𝐾 𝑥 = 𝑥3

𝐾 𝑥 = 𝑥4

range: [0,1]

𝐾 𝑥 =
𝑒𝑥 − 1

𝑒 − 1
𝐾 𝑥 = sin(

𝜋

2
𝑥)

x

k(x)=x

k(x)=x2

k(x)=x3

k(x)=x4

k(x)=ex-1/e-1

k(x)=sin(pi x/2)

𝑦

𝑥
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Cartesian coordinates

(𝑥, 𝑦)
Cartesian coordinates

(𝑥, 𝑦)

Log-polar coordinates

(𝑢, 𝑣)
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Cartesian coordinates

(𝑥, 𝑦)
Cartesian coordinates

(𝑥, 𝑦)

Kernel log-polar coordinates

(𝑢, 𝑣)

𝑢 = 𝐾−1
𝑙𝑜𝑔 𝑥2 + 𝑦2

𝐿
∙ 𝑤

𝑣 =
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑦
𝑥
+ 𝟏[𝑦 − 0] ∙ 2𝜋)

2𝜋
∙ ℎ
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• 𝑊: 𝑠𝑐𝑟𝑒𝑒𝑛 𝑤𝑖𝑑𝑡ℎ 𝐻: 𝑠𝑐𝑟𝑒𝑒𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 𝑤: 𝑏𝑢𝑓𝑓𝑒𝑟 𝑤𝑖𝑑𝑡ℎ ℎ: 𝑏𝑢𝑓𝑓𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

• 𝟏 𝑦 < 0 = ቊ
1 𝑦 < 0
0 𝑦 > 0

• 𝐿 = log 𝑊2 + 𝐻2

• 𝐾 𝑥 = σ𝑖=0
∞ 𝛽𝑖𝑥

𝑖 , 𝑤ℎ𝑒𝑟𝑒 σ𝑖=0
∞ 𝛽𝑖 = 1

Kernel Log-polar Mapping

𝑥 = 𝑒𝐿∙𝐾(
𝑢
𝑤) cos 𝑣 ∙

2𝜋

ℎ

𝑦 = 𝑒𝐿∙𝐾(
𝑢
𝑤
) sin 𝑣 ∙

2𝜋

ℎ
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𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑚𝑖𝑚𝑖𝑐

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑟𝑒𝑡𝑖𝑛𝑎



Kernel log-polar Mapping

• Define buffer parameter σ

𝜎 =
𝑊

𝑤
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𝑊

𝑤

𝑊



Kernel log-polar Mapping

• Define buffer parameter σ

𝜎 =
𝑊

𝑤
• Define kernel function parameter α

𝐾 𝑥 = 𝑥𝛼

Result of log-polar

(𝐾 𝑥 = 𝑥)

Result of kernel log-polar 

(𝐾 𝑥 = 𝑥4)
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Buffer parameter 

σ
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𝜎 = 1.2

Original Frame Buffer Screen Sample Map
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𝜎 = 1.7

Original Frame Buffer Screen Sample Map
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𝜎 = 2.4

Original Frame Buffer Screen Sample Map
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𝜎 = 1.2 𝜎 = 1.7 𝜎 = 2.4

Fovea Fovea Fovea
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kernel function parameter 

𝛼
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𝛼 = 1

Original Frame Buffer Screen Sample Map
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𝛼 = 4

Original Frame Buffer Screen Sample Map
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𝛼 = 6

Original Frame Buffer Screen Sample Map
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𝛼 = 1 𝛼 = 4 𝛼 = 6

Fovea Fovea Fovea
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User Study
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accept reject
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𝜎 ∈ 1.2, 2.4 step size: 0.2

𝛼 ∈ 1, 4 step size: 1.0

Resolution: 2560 × 1440
Field of view: up to 100 degrees 



0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

σ = 1.2 σ = 1.4 σ = 1.6 σ = 1.8 σ = 2.0 σ = 2.2 σ = 2.4

α = 1 91.67% 88.33% 78.33% 66.67% 46.67% 31.67% 31.67%

α = 2 91.67% 96.67% 86.67% 75.00% 58.33% 51.67% 46.67%

α = 3 91.67% 90.00% 81.67% 85.00% 66.67% 61.67% 41.67%

α = 4 96.67% 96.67% 95.00% 80.00% 66.67% 56.67% 48.33%

P
e
rc

e
n

ta
g

e

Identical percentage under different α and σ

α = 1 α = 2 α = 3 α = 4
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Kernel log-polar 

transformation

G-buffer

Inverse kernel 

log-polar transformation

& post anti-aliasing

Shading &

internal anti-aliasing

World position Bit tangent Normal

Texture coordinates Albedo map Roughness, ambient, and 

refraction maps

LP-buffer 
(𝜎 = 3.0)

Screen

50
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original ray-marching scene

10 FPS
foveated ray-marching scene (σ = 1.8, α = 4) 

30 FPS

fovea

51

* Scene created by Íñigo Quílez.
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original 3D geometries 

31 FPS
foveated 3D geometries (σ = 1.8, α = 4)

67 FPS

fovea

fovea
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Scene 3D Textured Meshes Ray Casting

Resolution
Ground 

Truth
Foveated Speed up

Ground 

Truth
Foveated Speed up

𝟏𝟗𝟐𝟎 × 𝟏𝟎𝟖𝟎 55 FPS 110 FPS 2.0X 20 FPS 57 FPS 2.9X

𝟐𝟓𝟔𝟎 × 𝟏𝟒𝟒𝟎 31 FPS 67 FPS 2.2X 10 FPS 30 FPS 3.0X

𝟑𝟖𝟒𝟎 × 𝟐𝟏𝟔𝟎 8 FPS 23 FPS 2.8X 5 FPS 16 FPS 3.2X
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55Ground Truth Kernel Foveated Rendering



Thanks!
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Kernel Foveated Rendering

Xiaoxu Meng, Ruofei Du, Matthias Zwicker and Amitabh Varshney
Augmentarium | UMIACS

University of  Maryland, College Park
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𝝈𝟐 −value 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Cochran’s Q value 1.72 5.76 8.20 8.25 7.49 14.27 5.48

p-value 0.631 0.122 0.042 0.041 0.058 0.002 0.139
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Kernel log-polar 

transformation

G-buffer

Inverse kernel 

log-polar transformation

& post anti-aliasing

Shading &

internal anti-aliasing

World position Bit tangent Normal

Texture coordinates Albedo map Roughness, ambient, and 

refraction maps

LP-buffer 
(𝜎 = 3.0)

Screen



Inverse kernel 

log-polar transformation

& post anti-aliasing

Shading &

internal anti-aliasing
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Non-uniform Gaussian Blur

Kernel size increase from left

(fovea) to right (periphery)

Non-uniform Gaussian Blur

Kernel size increase from

fovea to periphery
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