
Language-based Colorization of Scene Sketches
Supplementary Materials

Changqing Zou1,2∗ Haoran Mo1∗ Chengying Gao1†
Ruofei Du3‡ Hongbo Fu4

Sun Yat-sen University1 Huawei Noah’s Ark Lab2

Google3 City University of Hong Kong4

1 Technical Details

1.1 Loss function formulations
Foreground Colorization. Let x be an input object instance sketch image, y the corresponding
ground truth image, and s the paired input natural language expression. The GAN objective
function is expressed as:

LGAN (D,G) = Ey∼Pimage [logD(y)] + Ex∼Psketch,s∼Ptext [log(1−D(G(x, s)))] , (1)

and LGAN (G) uses the second term in this equation.
Let c be a class label output by the discriminator D. The auxiliary classification loss Lac(D)

for D is defined as the log-likelihood between the predicted and the ground-truth labels:

Lac(D) = E [logP (C = c|y)] . (2)

The auxiliary classification loss Lac(G) for generator G is defined in the same form as Lac(G) =
Lac(D) with the discriminator fixed but the image to be classified as a synthesized one.

The supervision loss Lsup(G) and the complete loss functions L(D) and L(G) for foreground
colorization can be found in Equation 2, 3, and 4 of the main paper.

Background Colorization. Given the input image x with the partially or completely colorized
foreground objects, the ground-truth color image y, and the language description s, the generator
G produces the synthesized image with the colorized background G(x, s). The cGAN objective
function is expressed as:

LcGAN (D,G) = Ex∼Pfg,y∼Pimage
[logD(x, y)] + Ex∼Pfg,s∼Ptext

[log(1−D(x,G(x, s)))] , (3)

and the objective of the generator LcGAN (G) is to minimize the second term.
Given the category size C, the segmentation mask prediction R ∈ RW×H×C , and the ground

truth segmentation mask R̂, the segmentation loss Lseg(G) is expressed in a cross-entropy manner:

Lseg(G) = −
1

WH

W∑
i=1

H∑
j=1

C∑
k=1

(
R̂ij

k ∗ log(R
ij
k)
)
. (4)

The supervision loss LL1−sup(G) and the complete loss functions L(D) and L(G) for background
colorization can be found in Equation 5, 6, and 7 of the main paper.
∗Both authors contributed equally to the paper.
†Corresponding author: mcsgcy@mail.sysu.edu.cn
‡This project was started before this author joined Google.

1

1.2 Implementation Details
Instance Matching Experiments. The maximum training iteration was 100K and the batch
size was set to 1. The initial learning rate was set to 0.00025 and Adam [2] was used as the optimizer.
We resized the scene sketch images and the corresponding ground-truth masks to 768× 768. The
iteration numbers of LSTM and mLSTM were both set to 15. The cell sizes of LSTM and mLSTM
were respectively set to 1,000 and 500. The Deeplab-v2 model [1] was trained on the SketchyScene
dataset [4].

Foreground Instance Colorization Experiments. We set the maximum training iteration
to 100K and used a mini-batch size of 2. We employed Adam [2] as the optimizer and set the initial
learning rate of generator to 0.0002 and that of discriminator to 0.0001. The iteration numbers of
LSTM and mLSTM were both 15 and their cell sizes were both set as 512. We set λ1 = 1 and
λ2 = 100 in Equations 3 and 4 in the main paper.

Background Colorization Experiments. We trained 100K iterations using a mini-batch size
of 1. Adam optimizer was used and the initial learning rate for both generator and discriminator
was set to 0.0002. The iteration numbers of LSTM and mLSTM were both 9 and their cell sizes
were both 1024. We set both λ1 and λ2 at 100 in Equation 7 in main paper.

2

2 Data Collection Details

2.1 Data Collection for Instance Matching
To train the instance matching network, we require triplet samples of scene sketches, text de-
scriptions, and instance mask(s) as shown in Figure 6 in the main paper. Since collecting such a
kind of data through manual annotation requires enormous crowdsourcing efforts, we designed and
implemented a fully automatic rule-based algorithm to generate the paired data, based on some
insights we learnt from the SketchyScene data [4] and the human cognition as below:

• The 24 selected categories (as shown in Table 1 of the main paper) can be divided into several
higher-level groups based on their characteristics, as shown in Table 1.

Table 1: Higher-level grouping of object categories.

Groups Categories

Distant objects sun, moon, cloud, star

Still objects house, bus, truck, car, bench, tree, road, grass

Animated objects bird, butterfly, cat, chicken, cow, dog,
duck, horse, people, pig, rabbit, sheep

• Humans tend to describe the adjacent objects with the same category using a single expres-
sion, e.g. “the two trees on the left are green”.

• Humans tend to describe distant objects without other reference objects or spatial informa-
tion, e.g. “the clouds are light blue” / “all the stars in the sky are red”.

• For still objects, humans tend to describe them without other reference objects but with
optional spatial information, e.g. “the left house is red with black roof” / “all the grass are
dark green” / “the road is black”.

• For animated objects, humans tend to describe them with still objects as reference along
with optional spatial information, e.g. “the person near the left car is in blue” / “the second
chicken on the right is yellow” / “the dog has brown body”.

Based on these insights, we designed a fully automatic rule-based algorithm, which is sum-
marized in Algorithm 1. In this algorithm, we obtained the language expression describing the
location of an instance, e.g. “the tree in the middle” / “the bus”, as well as its binary mask as shown
in Figure 6 of the main paper. However, in practice, the instructions that users assign to the sys-
tem specify not only the instance of their interest, but also their colorization goal, such as “the
tree in the middle is green”. To construct such a fully automatic model which still works well on
distinguishing specified target(s) based on an expression even with extra colorization information,
we turned to augmenting the location-only expression with random colorization descriptions. For
example, after obtaining “the bus”, we randomly selected a colorization description designed for
bus, e.g. “has orange body and blue windows”, from the FOREGROUND dataset, thus producing
“the bus has orange body and blue windows” finally. Note that data collection for the instance
matching task was automatically completed without any manual annotation.

3

Algorithm 1: Instance Matching Data Generation
Input: bboxesB : [B1; B2; :::Bn], class_labelsL : [L 1; L 2; :::L n], masksM : [M 1; M 2; :::M n]
Output: a set of O {caption T: its corresponding masks[M p; M q; :::]}

1

2 for B; L 2 B ; L do
3 raw_ items = RegisterItem (B ,L)

4

5 distant _ items = SelectDistantItems (raw_ items)
6 O_dist { T_ dist : [M p; M q; :::]} = GetTextAndMasksByItemNumber(distant _ items , M)
7

8 near_ items = SelectNeartItems (raw_ items)
9 still _ items; animated _ items = SplitItems (near_ items)

10

11 Function GroupingAdjacentItems(items) :
12 for item 2 items do
13 recursively look for another item _ t 2 items
14 if IsSameCategory(item _ t, item) & NotGrouped(item _ t) &

IsAdjacent (item _ t, item) then
15 item _ groups = MakeItemGroups(item _ t, item)
16 item _ groups_ map = { item _ groups:category: item _ groups}

17 return item _ groups_ map;

18

19 still _ groups = GroupingAdjacentItems (still _ items)
20 animated_ groups = GroupingAdjacentItems (animated_ items)
21

22 Function SetPositionOfItemsWithinGroup(group) :
23 SortByHorizontalPos (group)
24 pos_ distribution = FindPosDistribution (group)
25 for item 2 group do
26 item .SetPosition (pos_ distribution)

27 return ;

28

29 Function FindReference(self _ groups, ref _ groups) :
30 SortByHorizontalPos (self _ groups)
31 for s_ group 2 self _ groups do
32 if IsEmpty(ref _ groups) then
33 ref = FindClosestRefWithinSelfGroup (self _ groups)

34 if IsNotEmpty(ref _ groups) then
35 ref = FindClosestRefWithinRefGroup (ref _ groups)

36 s_ group.SetReference (ref)
37 SetPositionOfItemsWithinGroup (s_ group)

38 return ;

39

40 FindReference (still _ groups, [])
41 FindReference (animated_ groups, still _ groups)
42

43 O_near { T_ near : [M p; M q; :::]} = GetTextAndMasksByRefAndPos(still _ groups +
animated_ groups, M)

44

45 O = O_dist + O_near

4

2.2 Data Collection for Foreground Instance Colorization

The foreground instance colorization task requires triples of cartoon image, edge map (sketch),
language description, as shown in Figure 7 of the main paper. The detailed procedure of data
collection for this task is described below:

1. We �rst crawled cartoon instance images, covering 24 object categories, from the Internet
and then leveraged X-DoG [3] to extract an edge map as the corresponding sketch for each
image. All the cartoon images and sketches were resized to192� 192. We split the data
into the training and validation sets. As mentioned in Section 6 of the main paper, we also
built a test set which consisted of instance sketches from the SketchyScene [4] dataset. The
detailed numbers of examples for each category are shown in Table 2.

Table 2: Detailed information for foreground instance data.

Category Train Val. Test Category Train Val. Test

bench 119 24 50 bird 182 37 100

bus 167 33 34 butter�y 172 34 50

car 172 34 150 cat 223 45 50

chicken 164 33 100 cloud 132 26 50

cow 178 36 50 dog 165 33 50

duck 168 34 50 grass 109 22 50

horse 151 30 50 house 208 41 200

moon 124 25 50 people 252 51 200

pig 135 27 50 rabbit 160 32 50

road 100 20 50 sheep 155 31 50

star 167 33 50 sun 152 30 50

tree 139 28 50 truck 128 26 100

Total 3822 765 1734

2. Before collecting the color descriptions, we pre-de�ned 16 commonly used colors as shown
in Table 3, and the semantic part hierarchies for all the 24 categories as in the dataset for
instance matching as shown in the �Parts� column in Table 4. We pre-de�ned the semantic
part hierarchies because of the observation that some categories can be entirely described in
a single color, while others tend to have di�erent colors for di�erent object parts (e.g., the
windows and the body of a car might have di�erent colors). For the latter ones, we need to
assign part-level colors.

Table 3: Pre-de�ned colors for foreground objects.

Colors

Foreground
red, orange, yellow, light green, dark green, cyan, light blue, dark blue,

purple, pink, black, light gray, dark gray, light brown, dark brown, white

3. Based on the above preparation for color description collection, we designed an e�ective
approach with the aid of both human manual annotation and automatic generation, which
reduced signi�cantly the human e�ort compared with fully manual annotation.

4. At the human manual annotation side, we designed an easy way for users to make color
annotations. For example, to generate the descriptions for the colors of a car and its windows,

5

we �rstly made two folders named with �body� and �windows�. Inside the two folders, we
each made 16 empty folders named with the color phrases shown in Table 3. Then, workers
only needed to drag-and-drop the collected car images to the 16 empty folders for each part
(�body� or �windows�) according to the color of the speci�ed part.

5. At the automatic generation side, we �rst pre-designed some description patterns for each
of the 24 categories according to its semantic part hierarchy, as shown in Table 4. After
the human manual annotation, the descriptions were automatically generated with the these
sentence patterns.

Table 4: Description patterns for foreground categories.

Category Parts Description patterns

bench, butter�y,

Single �the ...(category) is ...(color)�

cat, cloud, cow,
dog, duck, grass,
horse, moon, pig,

rabbit, road, sheep,
star, sun, tree

bird

�the bird is ...�
body, �the bird has ... body�
wing �the bird is ... with ... wing�

�the bird has ... body and/with ... wing�

chicken

body, �the chicken is ...�
head, �the chicken has ... head and/with ... body�
tail �the chicken has ... body and/with ... tail�

�the chicken has ... head, ... body and/with ... tail�

bus
body, �the bus is ...�

windows �the bus is ... with ... windows�
�the bus has ... body and/with ... windows�

car
body, �the car is ...�

windows �the car is ... with ... windows�
�the car has ... body and/with ... windows�

truck
body, �the truck is ...�

carriage �the truck is ... with ... carriage�

house
body, �the house is ...�
roof �the house is ... with ... roof �

people

hair, �the person is in ...�
shirt, �the person has ... hair and is in ...�

pants/ �the person is in ... shirt and/with ... pants/skirt�
skirt �the person has ... hair and is in ... shirt and/with ... pants/skirt�

6. To imitate user inputs in practice, which might contain both location and colorization in-
formation, we randomly augmented the location information based on sentence structure
patterns for each collected description. For example, in Figure 7 of the main paper, after
obtaining �the chicken is light brown� by the above steps, we randomly selected a location
phrase from the MATCHING dataset, e.g. �in front of the house�, and inserted it between
�the chicken� and �is light brown� . This can be done since we have already known the sen-
tence structures as summarized in Table 4. Thus, we obtained the complete description�the
chicken in front of the house is light brown�. Note that this augmentation is optional, because
users might not always assign instructions with location information. For example, given a
scene sketch with only one car, users probably assign a simple instruction like�the car is/has
...� without describing its location.

6

With the above procedures, we employed 6 users to annotate, through the drag-and-drop way,
the colors of the overall or part-level regions of the cartoon images, and then obtained the descrip-
tion sentences automatically .

7

2.3 Data Collection for Background Colorization

Figure 1: Illustration of the data collection procedure for background colorization.

The pipeline of the data collection for background colorization is shown in Figure 1 (the same
as Figure 8 in the main paper), which produces four modality data: foreground image, background-
colorized image, description, and segmentation label map. The detailed procedure is as follows:

1. Since the SketchyScene [4] dataset has provided the ground-truth bounding box (sketch
template, Figure 1(a)) of each instance, we �rst searched our cartoon clip art dataset for the
cartoon instances with the same category and similar size to each bounding box and then
placed them into a 768� 768 white canvas, which forms the foreground image, as shown in
Figure 1(b).

2. We recruited users to produce the background-colorized images by manually painting the
blank regions with solid colors with practical color �lling tools such as the Paint tool under
Windows. Speci�cally, we required users to paint with only two colors, �blue� (in RGB (153,
217, 234)) assky and �green� (in RGB (181, 230, 29)) asground, as shown in the fourth
column of Figure 1.

3. Since we have known the distinct RGB values of thesky and the ground, we obtained the
segmentation mask of three categories:sky, ground and foreground simply by checking the
color value of each pixel, as shown in Figure 1(c).

4. With the segmentation mask, we �rst de�ned several color phrases with di�erent RGB values
(11 colors forsky and 5 colors forground, as shown in Table 5), and then randomly assigned
the colors to the sky and ground regions as a data augmentation process for each foreground
image. Given the randomly selected colors, we produced the descriptions based on the
pattern �the sky is ... and the ground is ...�, as shown in the three columns on the right of
Figure 1. Note that the data augmentation and the description generation can both be done
automatically, thus making it possible to generate a large-scale dataset.

Table 5: Color de�nition for background.

Colors

Sky red, orange, yellow, green, cyan, blue, purple, pink, black, gray, brown

Ground yellow, green, black, gray, brown

With the designed procedures above, we �rst collected 3932, 300, and 727 sketch templates from
the training, validation and test set of the SketchyScene dataset, and then produced foreground
images for each template. Afterwards, we employed 24 users to produce a background-colorized
image (all in blue skyand green ground) for each foreground image. Finally we automatically
augmented each foreground image with 3 more background-colorized images, and totally obtained
15728, 1200, 2908 quadruple data for training, validation, and testing.

8

	Technical Details
	Loss function formulations
	Implementation Details

	Data Collection Details
	Data Collection for Instance Matching
	Data Collection for Foreground Instance Colorization
	Data Collection for Background Colorization

	More Colorization Results
	Un-targeted Colorization
	Targeted Colorization

