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Abstract— Immersive maps such as Google Street View and Bing Streetside provide true-to-life views with a massive collection
of panoramas. However, these panoramas are only available at sparse intervals along the path they are taken, resulting in visual
discontinuities during navigation. Prior art in view synthesis is usually built upon a set of perspective images, a pair of stereoscopic
images, or a monocular image, but barely examines wide-baseline panoramas, which are widely adopted in commercial platforms to
optimize bandwidth and storage usage. In this paper, we leverage the unique characteristics of wide-baseline panoramas and present
OmniSyn, a novel pipeline for 360◦ view synthesis between wide-baseline panoramas. OmniSyn predicts omnidirectional depth maps
using a spherical cost volume and a monocular skip connection, renders meshes in 360◦ images, and synthesizes intermediate views
with a fusion network. We demonstrate the effectiveness of OmniSyn via comprehensive experimental results including comparison
with the state-of-the-art methods on CARLA and Matterport datasets, ablation studies, and generalization studies on street views. We
envision our work may inspire future research for this unheeded real-world task and eventually produce a smoother experience for
navigating immersive maps.

Index Terms—360 image, virtual reality, view synthesis, panorama, neural rendering, depth map, mesh rendering, inpainting

1 INTRODUCTION

Recent advances in 360◦ cameras and virtual reality headsets have
promoted the interests of tourists, renters, and photographers to capture
or explore 360 images on commercial platforms such as Google Street
View [1], Bing Streetside1, and Matterport2. These platforms allow
users to virtually walk through a city or preview a floorplan by inter-
polating between panoramas. However, the existing solutions lack the
visual continuity from one view to the next and suffer from ghosting
artifacts caused by warping with inaccurate geometry. While prior art
reports successful view synthesis experiments in a set of perspective
images [5, 8, 19, 22–24], a single image [29, 58], and a pair of stereo-
scopic panoramas with a narrow baseline [2], not much prior work
addresses how we could synthesize an omnidirectional video with large
movements, i.e., using a wide-baseline pair of panoramas. Since wide-
baseline panoramas are broadly adopted for capturing and streaming
on commercial platforms, we envision view synthesis on this data can
reduce the additional effort of converting to perspective images and
leverage the full field-of-view for better alignment between the two
panoramas.

Our goal is to synthesize 360◦ videos between wide-baseline panora-
mas and stream to consumer devices for an interactive and seamless
experience (Fig. 1). Unlike past research which only synthesizes novel
views within a limited volume [5,29] or along a trajectory in rectilinear
projection [19], our generated 360◦ video allows users to move for-
ward/backward, stop at any point, and look around from any perspective.
This unlocks a wide range of virtual reality applications such as cine-
matography [51], teleconferencing [53], and virtual tourism [14, 15].

Classical methods for view synthesis [22, 24] often rely on structure-
from-motion [56] or multi-view stereo [21] pipelines to perform a
sparse 3D reconstruction and develop algorithms to densify the recon-
struction. Unfortunately, the existing approaches can hardly be applied
to wide-baseline 360◦ images directly (Fig. 2). On the one hand, most
existing works target perspective images which encounter visual dis-
continuities when objects move outside their field of view. On the other
hand, applying monocular methods to multi-view scenarios leads to
alignment issues between images as intermediate images are not fused
from multiple views. Further, real-world street view images do not
have a sufficiently dense layout to apply multiview stereo methods. So
our research questions are: How can we achieve novel view synthesis
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Fig. 1: Given two wide-baseline 360◦ images and poses, our goal is
to synthesize a video sequence of intermediate frames with plausible
movement and alignment between the input images.

between a pair of wide-baseline 360◦ images? How can we leverage the
full field of view to align the pair of panoramas and inpaint occluded
regions?

To answer these questions, we contribute a new pipeline for 360◦
view synthesis using wide-baseline panoramas. Unlike the prior art, our
inputs are a pair of 360◦ images which are at least 5 meters apart for
street view scenes and 2 meters apart for indoor scenes. Our pipeline
is comprised of a depth predictor, a 360◦ mesh renderer, and an image
fusion network. We train our pipeline on datasets from CARLA and
Matterport and compare it with the state-of-the-art monocular view
synthesis pipeline for perspective images. Our contributions are as:

• Motivated by the goal of street view interpolation, we identify
challenges associated with view synthesis between wide-baseline
panoramas.

• We augment the classical view synthesis pipeline to address the
challenges by using 360 cost volume for depth estimation, incor-
porating mesh rendering, and leveraging wide-baseline panoramas
in the depth-estimation and fusion components.

• We conduct experiments against a modified version of SynSin,
which is currently the state-of-the-art view synthesis pipeline. We
also conduct ablation experiments to compare mesh rendering
with point cloud rendering and identify the suitable scenarios for
each.
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Fig. 2: Examples of perspective image sequences with 1 meter base-
lines. In perspective image pairs over long distances (e.g. 5 meters),
large regions of each image are not visible from the other image. There-
fore existing methods cannot be applied for wide-baseline 360◦ view
synthesis by simply projecting to perspective images.

2 RELATED WORK

Our work builds upon a rich literature of prior art on view synthesis and
neural rendering. View synthesis has been studied in many setups such
as dense image sequences, unstructured photo collections, as well as
unique camera layouts. Here we provide a brief overview of the recent
advances in perspective view synthesis and 360◦ view synthesis most
relevant to our work.

2.1 Perspective View Synthesis

Existing work in view synthesis can be classified into one of the follow-
ing categories: reconstruction-based, multiplane image (MPI) based,
implicit-based, and warping-based methods.

Traditional methods in view synthesis reconstruct the underlying 3D
geometry of the scene with multiview perspective images. Given a set
of images with sufficient overlap, tools such as COLMAP [44,45] allow
sparse 3D reconstruction using structure-from-motion and multi-view
stereo techniques. Such 3D reconstructions can then be used to create
meshes to render views from novel perspectives [20, 24, 60, 61].

Later research focuses on view synthesis using layered representa-
tions including MPI [18, 19, 50, 54, 66], layered-depth images (LDI)
[12, 49, 55], and multi-sphere images (MSI) [2]. Once the underlying
representation is generated, these methods offer high-quality view-
synthesis with standard mesh rendering. Layered methods work for
both stereo inputs [19, 39], as well as monocular methods [12, 54].

Recent work on neural radiance fields (NeRF) [35, 36, 62] creates
implicit representations for view synthesis from a set of perspective
images. From these neural representations, views from new positions
can be extracted using a volume rendering procedure. NeRF models can
be trained using as few as 16 narrow-baseline images from a standard
phone camera.

Warping and projection-based view synthesis are often used in low-
data scenarios such as monocular and stereo view synthesis. Chen et
al. [9] developed the transforming autoencoder which estimates the
target depth and applies back-projection. Following this work, Wiles
et al. [58] developed SynSin which performs forward-projection via
differentiable point cloud rendering. By adding a feature encoder and
GAN-based decoder, SynSin is even able to properly handle occlusions
synthesizing views from a single image.

In wide-baseline view synthesis, researchers augment warping and
projection with blending in developing view synthesis pipelines. Müller
et al. [37] perform view synthesis by masking, projecting, and filtering
background and foreground layers in a 3-stage process. Hobloss et al.
[25] develop a hybrid approach for wide-baseline view synthesis with
depth-based warping, two-step hole filling, and CNN-based blending
procedures.

2.2 360◦ View Synthesis

Similar to view synthesis for perspective images, view synthesis for
360◦ images and videos has been studied with different goals and input
scenarios. For instance, a 360◦ view synthesis loss can be used for
self-supervised depth estimation [67].

In 360◦ view synthesis, researchers have developed pipelines for
generating views from multiple cameras using traditional reconstruc-
tion pipelines. Hedman et al. [22] develop Casual 3D photography, an
algorithm which creates 5-DoF 360◦ scenes from 180◦ fisheye cameras.
With 50 input images along a ring, they can create a dense recon-
struction which allows them to perform view synthesis with depth and
normal map estimations. Similar approaches have also been applied to
sets of 360◦ images [10, 65] and 360◦ video [26].

Another traditional view synthesis technique involves light fields.
Light fields involve capturing several images and considering each
pixel as a result of a 4D plenoptic function evaluated from a light ray
through free space. New images from different perspectives can then be
generated by sampling from the existing set of light rays. Spherical light
fields can be captured using a fisheye lens on a motorized setup [11].

360◦ view synthesis techniques have been used to create motion
parallax for VR viewing [2–4, 34, 47]. Attal et al. develop MatryO-
DShka [2] which uses multi-sphere images to add motion parallax to
ODS video. Bertel et al. develop OmniPhotos [4], a method to perform
5-DoF view synthesis from a sequence of 360◦ photos along a roughly
circular path with 1-meter diameter. Layered depth image (LDI) ap-
proaches have also been extended to spheres to offer real-time 6-DoF
video playback [5, 31].

Recently, there has also been a line of research on synthesizing street
view images from satellite images. Lu et al. [33] synthesize street
view images for urban areas by predicting the depth and semantics of
satelite images. Shi et al. [48] develop and end-to-end pipeline for
more suburban and rural areas by predicting multi-plane images (MPIs)
from satellite imagery. Li et al. [30] synthesize street-view videos by
predicting a latent point-cloud representation from satellite images. In
a closer line of work, Park et al. [38] combine street view images and
scene models to perform image synthesis while Rafique et al. [40]
uses a single image. All techniques yield impressive results but do not
closely resemble the true satellite images as satellite-to-street view is
an extremely under-constrained problem.

Despite the significant efforts in view synthesis, existing techniques
and pipelines are unsuitable for wide-baseline 360◦ view synthesis.
Many often require dense sets of images or unique camera setups and
promising monocular pipelines often fail to accurately align their syn-
thesized views with ground-truth images. To address the challenge
of wide-baseline 360◦ view synthesis from existing datasets, we have
developed a pipeline tailored to this setup. Our pipeline is inspired
by existing projection-based view synthesis pipelines but leverages
360◦ stereo inputs with varying baselines to estimate depth for accu-
rate alignment between images. To enable inpainting and fusion over
large baselines, we use mesh rendering which better represents the
discontinuities of the underlying scene.

3 METHOD

OmniSyn, shown in Fig. 3, consists of three major components to
synthesize novel views for wide-baseline panoramas: a stereo depth
predictor, a differentiable 360◦ mesh renderer, and an image fusion
network. OmniSyn takes two wide-baseline panoramas in equirectan-
gular projection (ERP) and poses from the street view or Matterport’s
metadata as input.

Given two 360◦ ERP panoramas and their relative poses to a target
position, our stereo depth predictor first estimates the depth of each
panorama using a spherical sweep cost volume. Based on the estimated
depths, we build a mesh representation for each panorama with discon-
tinuities computed from depth estimates. Each mesh is rendered from
the target position into a separate 360◦ panorama with a corresponding
visibility map. Following this step, our fusion network joins the two
panoramas together resolving ambiguities and inpaints any holes to
produce the final 360◦ panorama.
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Fig. 3: Our 360◦ view synthesis pipeline consists of a stereo depth predictor, a 360◦ mesh renderer, and an image fusion network. All the three
components are differentiable, while only the depth predictors and image fusion network have learnable parameters.
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Fig. 4: An overview of our stereo depth prediction network for wide-baseline 360◦ panoramas. Our depth prediction network features a stereo
path which estimates depth using a spherical cost volume and a monocular skip connection which allows semantic depth estimation for occluded
regions.

3.1 Depth Prediction

To perform consistent depth prediction from wide-baseline panoramas,
we build a network architecture inspired by StereoNet [28], modified for
stereo 360◦ depth estimation. Our depth prediction network consists of
three components: a 2D feature encoder, a 3D cost volume refinement
network, and a 2D depth decoder. Stereo depth estimation allows
the network to match features presented in both of the 360◦ images
for aligned depth estimation while the monocular connection allows
the network to predict depth for regions occluded in the other image.
We follow StereoNet in first predicting a low-resolution depth. Next,
instead of using the perspective cost volume, we leverage a spherical
sweep [27, 59] cost volume of features. A refinement stage filters the
cost volume and an upsampling stage guided by the feature map of the
input image outputs the inverse depth prediction.

Our depth pipeline is shown in Fig. 4. We use a UNet [42] with 5
downsampling blocks and 3 upsampling blocks for the feature encoder,
a 3D UNet with 3 downsampling and 3 upsampling blocks for the cost
volume refinement network, and 2 convolutional blocks for the depth
decoder. Similar to 360SD-Net [57], we input the vertical index as an
additional channel for each convolutional layer in our depth prediction
network, a technique also known as CoordConv [32]. This allows

the convolutional layers to learn the distortion associated with the
equirectangular projection (ERP). The final output convolutional layers
in our depth network output one over the depth. To get the Euclidean
depth, we take the inverse of this output.

3.2 Mesh Creation

To render each image from the novel viewpoint, we first create a spher-
ical mesh for each input image. By using a mesh representation rather
than a point cloud representation, we avoid density issues associated
with creating point clouds from ERP images, as shown in Fig. 5. When
moving large distances, point clouds created from ERP images contain
widely varying levels of sparsity which are difficult to inpaint.

For a W ×H resolution output image, we create a spherical mesh
following the UV pattern with 2H height segments and 2W width
segments. Next, vertices are offset to the correct radius based on the
Euclidean depth d from the depth prediction stage. After creating
the mesh and offsetting vertices to their correct depth, we calculate
the gradient of the depth map along the θ and φ directions, yielding
gradient images dθ and dφ . These gradient images represent an estimate
of the normal of each surface. Large gradients in the depth image
correspond to edges of buildings and other structures within the RGB

3



Point Cloud Render Mesh Render

3 m

2 m

1 m

4 m

OmniSyn (Mesh) GT Visibility from 0 m PanoGround TruthOmniSyn (Point Cloud)

Fig. 5: A comparison between mesh rendering and point cloud rendering with ERP panoramas at 1−4 meters of movement. As moving distance
increases, the distribution of nearby points in the point cloud drastically shifts, leading to sparse regions in the point cloud render and lower
overall quality. In contrast, our 360◦ mesh renderer more accurately projects the input with respect to the true visibility map.

Dataset Method IMAE ↓ IRMSE ↓ MAE ↓ RMSE ↓ 1.05 ↑ 1.10 ↑ 1.25 ↑ 1.252 ↑ 1.253 ↑
CARLA
(ERP)

SynSin 0.0060 0.0090 1.19 5.34 0.8400 0.8837 0.9358 0.9799 0.9921
OmniSyn 0.0042 0.0074 1.22 6.20 0.8473 0.8856 0.9347 0.9770 0.9913

Matterport
(ERP)

SynSin 0.1320 0.1775 0.641 2.119 0.2021 0.3517 0.6187 0.8838 0.9667
OmniSyn 0.0518 0.1142 0.282 0.741 0.6307 0.7706 0.8936 0.9573 0.9838

Table 1: Quantitative results of Euclidean depth prediction on ERP images. Evaluating the accuracy of source depth prediction determines how
well view synthesis results align between consecutive panoramas. For our stereo method, we present results using a 1-meter baseline between
stereo images.

image. These surfaces have a normal vector perpendicular to the vector
from the camera position. To classify discontinuities in the 3D structure,
we identify areas where adjacent pixels are greater than some fixed
value k apart. For these areas, we discard triangles within the spherical
mesh to accurately represent the underlying discontinuity.

With the meshes created and discontinuities calculated, we use a
modified version of PyTorch3D [41] to render the mesh from the new
viewpoint to a 360◦ RGBD image. The mesh renderings contain holes
due to occlusions in the original images. These holes are represented in
the depth image as negative values, from which we extract a visibility
mask, as shown in Fig. 3.

To adapt the built-in mesh renderer to output 360◦ images, we mod-
ify their rasterizer which project vertices from world-coordinates to
camera-coordinates and finally to screen coordinates. Rather than mul-
tiplying vertex camera-coordinates by a projection matrix, we apply
a Cartesian to spherical coordinates transformation and normalize the
final coordinates to [−1,1]. However, doing this results in 2 issues: tri-
angles wrapping around the left and right edges of the ERP images may
be cut-off and straight lines in Cartesian coordinates may be incorrectly
mapped to straight lines in ERP image coordinates. To address the first
issue, we do 2 render passes, one rotated by 180◦, and composite the
passes together so that triangles which wrap around are not missing in
the final render. We address the second issue by using a dense mesh
to minimize the length of each triangle in the final image. One way
to address the both issues simultaneously would be to render the 6
perspective sides of a cubemap and project the cubemap into an ERP
image. However, this method incurs a significant performance and
memory penalty from rendering 6 images.

3.3 Image Fusion
After rendering each mesh from the new viewpoint, holes appear in
each rendering due to the occlusions in the synthesized view. A naive
way to fill such holes is to alpha-blend both images based on their

visibility maps. However, this may still leave holes in regions occluded
in both images and lead to ghosting where objects are not perfectly
aligned. Thus, we use a fusion network o fuse the two mesh renderings
and inpaint the holes into a single consistent panorama. Specifically,
we employ a 2D UNet. We first generate a binary visibility mask
to identify holes in each rendered based on the negative regions in
the mesh rendering depth image. Then we input both RGB mesh
renderings and the corresponding binary masks into the fusion and
inpainting network to get the final fused and inpainted RGB image.

Our fusion network is a 2D UNet with 6 downsampling blocks,
1 intermediate block, 6 upsampling blocks, and a final convolution
layer. Each block consists of the following layers: Padding, Conv,
LeakyReLU, Padding, Conv, and LeakyReLU. Downsampling is per-
formed using average pooling at the end of each downsampling block.
Upsampling is performed using bilinear interpolation at the beginning
of each block. We use circular padding at each convolutional layer,
simulating Circular CNNs [46], to join the left and right edges. The
top and bottom of each feature map use zero padding. The inputs to
our network are mesh renderings and visibility maps from each input
panorama, totalling eight channels. The output is three channels of
RGB representing the final inpainted frame.

3.4 Training

3.4.1 Loss Functions

Our network is end-to-end differentiable but training can also be per-
formed in two supervised stages to increase modularity. In our ex-
periments, we train each stage for 48 hours for a total of 96 hours of
training on a single GPU. In the first stage, we train the stereo depth
predictor. Our inputs for the depth predictor are two wide-baseline
images in a sequence. The depth predictor includes two heads, an
intermediate which predicts a low-resolution depth dpred low with nlow
pixels based on only the cost volume and a final head which predicts
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a higher resolution depth dpred hi with nhi pixels from the feature map
and the cost volume. The intermediate head is used to ensure that
gradients flow through the 3D cost volume UNet. Our loss function for
depth is:

`depth =
1

nhi

∥∥∥∥ 1
dgt
− 1

dpred hi

∥∥∥∥
1
+

λ

nlow

∥∥∥∥ 1
dgt
− 1

dpred low

∥∥∥∥
1

(1)

For our experiments, we use λ = 0.5.
In the second stage, we train the fusion network using sequences of 3

panoramas: (p0, p1, p2). Mesh renders are generated from the first and
last panoramas (p0, p2) using the pose of the intermediate panorama
p1. The fusion network receives these mesh renders and combines
them to predict the full intermediate panorama ppred . The ground-truth
intermediate panorama p1 is used for supervision. As the l1 loss has
been found to perform better for image-to-image applications [64], we
use it to supervise the fusion network output:

` f usion =
∥∥p1− ppred

∥∥
1 (2)

Our total loss is:

`total = `depth + ` f usion (3)

3.4.2 Linearization of Arccos
Oftentimes in our pipeline, we need to convert between Cartesian and
spherical coordinates for operations such as performing transformations
or rasterizing to ERP images. The standard equations for converting
from Cartesian to spherical coordinates are:

θ = arctan2(z,x) (4)

φ = arccos

(
y√

x2 + y2 + z2

)
(5)

r =
√

x2 + y2 + z2 (6)

However, the derivative of arccos(ỹ) is −1√
1−ỹ2

. Near the north and

south poles, ỹ2 = y2

x2+y2+z2 ≈ 1, which leads to numerical issues com-
puting the gradient in the backwards pass. To address this issue, we use
a linear approximation for arccos for all points within α degrees of the
north and south poles. This mitigates numerical issues by clipping the
maximum and minimum gradient values near the poles, but preserving
the sign of the gradient. In our experiments, we found that using α = 10
degrees (≈ 0.174 rad) is sufficient for avoiding numerical issues in the
backwards pass. During training, we use the following formula for φ :

φ =


arccos

( y
r
)

if
∣∣ y

r

∣∣< cos(α)

α · 1−y/r
1−cos(α)

if y > 0 and
∣∣ y

r

∣∣≥ cos(α)

π−α · 1+y/r
1−cos(α)

if y≤ 0 and
∣∣ y

r

∣∣≥ cos(α)

(7)

4 EXPERIMENTS

We conduct experiments comparing our pipeline to the state-of-the-art
view synthesis pipeline, SynSin [58]. Our experiments are conducted
on synthetic outdoor scenes from CARLA [13] and real-world indoor
scenes from Matterport3D [7]. To evaluate how models from each
pipeline adapt to variable wide-baseline scenarios, our evaluations focus
on view-synthesis results across variable distances and source depth
accuracy which is essential for alignment between images synthesized
from consecutive images.

4.1 Datasets and Metrics
We conduct experiments on synthetic street scenes from CARLA [13]
as well as real-world indoor scenes from Matterport3D [7]. For each
dataset of scenes, we compare source depth prediction and view syn-
thesis results. Source depth accuracy provides insight into how well

view synthesis results align with adjacent panoramas. View synthesis
results provide insight into the accuracy of inpainting and fusion.

For CARLA, we use scenes from Town 1 to Town 6. Towns 1, 2,
3, and 4 are used as training towns with Town 5 used for validation.
Town 6 is used for testing. We customize each scene to normalize
weather conditions and to remove all cars and pedestrians. For each
town, we generate sequences of 1000 frames from each of the first
40 starting points. Each frame consists of an RGB panorama, depth
panorama, and pose metadata. Panoramas are created by rendering the
6 sides of cubemaps at 256× 256 for each frame and stitching them
into 1024×512 ERP images. During training, we resize and subsample
each sequence of frames to create 256×256 image sequences with a
fixed distance between frames. We use baselines from 1 meter to 6
meters with 1 meter intervals during training. For illustrative purposes,
we display results with a 2 : 1 aspect ratio by resizing the 256× 256
outputs.

For Matterport3D, we use Habitat-Sim [43] to generate frames at
training and inference time. Similar to CARLA, we generate 6 256×
256 perspective images representing cubemap sides and stitch them
into a single 256× 256 ERP image. Our train and test split follows
that of SynSin. During training and evaluation, we use sequences of 3
panoramas with a fixed baseline from 0.25 meters to 1 meter with 0.25
meter intervals. The middle panorama is synthesized based on the first
and last panorama in the sequence.

For comparing the accuracy of Euclidean source depth prediction,
we use mean absolute error of the inverse depth (IMAE) and root mean
squared error of the inverse depth (IRMSE) following the KITTI Depth
Completion Evaluation benchmark3. Inverse depth weights errors in
closer depths greater than errors in further depths and is directly propor-
tional to disparity in perspective images. We also present the standard
mean absolute error (MAE) and root mean squared error (RMSE)
results. Inverse depth metrics are measured in one over meters and stan-
dard depth metrics are measured in meters. Following existing depth-
estimation papers [63], we present δ < [1.05,1.10,1.25,1.252,1.253].
To omit outliers and missing regions in each dataset, such as the sky,
we compute results with respect to valid depth regions in each dataset
between 1 and 50 meters. Our full depth prediction results are shown
in Table 1. Qualitative results for depth prediction are shown in Fig. 6
using the Turbo colormap4.

To compare view synthesis results for spherical ERP images, we use
Weighted-to-Spherically-uniform PSNR (WS-PSNR) [52]. View syn-
thesis results are computed for a variety of distances for both datasets.
We also provide results of qualitative comparison in Fig. 8 and Fig. 9
on both CARLA and Matterport3D datasets.

4.2 Comparison to SOTA

We compare the depth and view synthesis results of our method to
that of the current state-of-the-art view synthesis method, SynSin [58],
which also uses geometric based warping. To adapt SynSin which
is designed for perspective images to 360◦ images, we modify their
perspective point cloud renderer to project 360◦ point clouds and render
360◦ ERP images.

While SynSin is designed to work with only one image, we also
compare with a 2-view version of SynSin in Fig. 7. For the 2-view
version of SynSin, the depth predictor and feature encoder operates
independently for each input image. Then both latent point clouds are
combined by concatenating the list of points. A single output image is
generated by decoding a single feature map from the combined point
cloud.

For both SynSin and OmniSyn, we train in a supervised manner
using ground-truth depth from both datasets. While SynSin provides
compelling results with small movements, OmniSyn performs better in
aligning with the second ground truth image and inpainting occluded
areas with large movements.

3KITTI benchmark: http://cvlibs.net/datasets/kitti/eval_

depth.php?benchmark=depth_completion
4Turbo colormap: https://ai.googleblog.com/2019/08/

turbo-improved-rainbow-colormap-for.html
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Fig. 6: Qualitative results for Euclidean depth prediction on the CARLA dataset.
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Fig. 7: Quantitative view synthesis results of OmniSyn on Carla and
Matterport3D datasets. For 360◦ view synthesis, OmniSyn outperforms
SynSin for both indoor and outdoor scenes. However, there is a quality
trade-off associated with using mesh over point clouds in indoor scenes.

4.3 Robustness to Wide Baseline

To determine how different 3D representations respond to varying
baselines of inputs, we conduct an ablation study comparing the results

of point-cloud rendering and mesh rendering. As shown in Fig. 5, point
cloud representations benefit from small movements as discontinuities
do not need to be explicitly calculated based on normal estimates.
However, for large movements needed in wide-baseline view synthesis,
point clouds suffer from sparsity in their representation, leading to
worse inpainting results than the mesh renderer. Quantitative results
are shown in Fig. 7.

4.4 Generalization to Real Street View Images
To qualitatively evaluate how well our model generalizes to real street
view images, we run our stereo model over selected images from
Google Street View [1]. We select suburban scenes without moving cars
or pedestrians to match the static scene scenario of the CARLA training
dataset. For each set of input images, we generate two intermediate
images using an estimated pose from geographic (latitude, longitude,
heading) metadata. Qualitative results are shown in Fig. 10.

5 DISCUSSION

We have shown that OmniSyn outperforms the state-of-the-art monocu-
lar view synthesis pipeline on CARLA and Matterport datasets. While
our pipeline requires a pair of wide-baseline panoramas, such data is
widely available on commercial platforms such as Google Street View
and Bing Streetside. We discuss our key findings and limitations.

5.1 Observations
OmniSyn handles occlusions using stereo inputs and a fusion network
that fuses stereo inputs and inpaints occluded regions in both images
whereas SynSin handles occlusions using latent features and a GAN-
based decoder network. When comparing quantitative results from
SynSin and OmniSyn, we see that stereo inputs outperform GAN-
based feature decoding. This is especially true for indoor scenes as
shown in Fig. 9.

In the case of indoor scenes from Matterport3D, monocular depth
prediction yields less accurate depths than stereo depth prediction as
shown in Table 1 due to the greater variability of scenes. This makes
monocular methods unsuitable for wide-baseline view synthesis from
stereo panoramas where accurate depth is crucial for aligned view
synthesis. We see in Fig. 7b, the 2-view version of SynSin actually
performs slightly worse on the indoor scenes due to the inaccurate
monocular depth. However, for outdoor scenes from Carla where the
depth of the road is fairly consistent between all images, monocular
depth prediction yields similar results to our stereo depth. This allows
OmniSyn and the 2-view version of SynSin to both outperform the
single-view SynSin.

Comparing mesh rendering and point cloud renderings, we see in
Fig. 5 that point cloud rendering has high sparsity in regions closer to
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Ground Truth 1 meter

SynSin

OmniSyn

Ground Truth2 meters 3 meters 4 meters

Fig. 8: Qualitative results of 360◦ view synthesis on outdoor scenes of the CARLA dataset with inputs 5 meters apart. By leveraging stereo
panoramas for depth prediction and synthesis, our method is able to generate views to accurate metric scale distance and render sides of buildings
that may be unclear or less sharp when generated from only a single view.

Ground Truth 0.2 meters Ground Truth0.4 meters 0.6 meters 0.8 meters

SynSin

OmniSyn

Fig. 9: Qualitative results of 360◦ view synthesis on indoor scenes of the Matterport3D dataset. The pair of ground truth images are spaced 1
meter apart.
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Fig. 10: Generalization of our model trained on the CARLA dataset to
suburban street view images.

the camera, forcing the inpainting or fusion networks to fill-in more of
the road. In scenarios where there are distinct textures on the road, such
as lane markers and traffic symbols, this causes OmniSyn to generate
incorrect textures. When looking at quantitative results, OmniSyn with
point cloud rendering achieves worse WS-PSNR results than with mesh
rendering. Therefore for outdoor scenes where the depth to the closest
regions is small relative to the amount of movement, we suggest using
mesh rendering over point cloud rendering to avoid such sparsity issues.

Input 0 Input 1Synthesized

Fusion network does not generalize well to unseen colors.

Depth prediction struggles with tall buildings.

Triangle removal may eliminate thin structures.

Fig. 11: Three types of failure cases which may cause artifacts.

5.2 Limitations
Running our CARLA-trained OmniSyn model on Google Street View
images, as shown in Fig. 10, we see that the outputs are reasonable
for objects within the CARLA dataset such as buildings and roads.
However, thin objects such as wires and tree branches are not well
represented in the output. Furthermore, objects such as cars that are
not included in the CARLA training procedure are poorly rendered.
Similar to the prior art in view synthesis, our pipeline currently focuses
on static scenes. While this assumption may hold in street view images
of sparsely-populated suburban areas, most real street view images are
taken in a dynamic environment filled with moving cars, pedestrians,
and objects. One way to address this would involve extending object
motion detection methods [6] to sparse 360◦ street view imagery. High-
quality view synthesis for real 360◦ street view scenes continues to
remain an open challenge.

We identify three types of failure cases in Fig. 11. First, spherical
sweeping struggles to estimate depth for tall buildings due to distortion
in the ERP projection and sweeping levels being more concentrated
on closer depths. Second, triangle culling may lead to thin objects
being removed. Third, the fusion network does not generalize well to

unseen objects and colors. One may overcome these limitations by
training with a diverse synthetic data which includes moving objects or
with large-scale street view datasets. The depth predictor may also be
further augmented with rectangular filters [68] and a quaternion loss
function [17].

Our current pipeline and primary results are ran on 256×256 res-
olution images which is unsuitable for high-resolution VR and AR
experiences as users only see a limited portion of 360◦ images at any
given moment. One of the benefits of using a mesh representation, or
similar MPI and LDI representations, is that meshes can be textured
with high-resolution images, regardless of the vertex density of the
mesh. Therefore, higher resolution results can be achieved by com-
bining a low-resolution depth prediction with a high-resolution mesh
rendering as done in previous work [2].

6 CONCLUSION

In this paper, we examine the task of intermediate view synthesis for
wide-baseline 360◦ panoramas, typically ≥ 5 meters apart. We start
by evaluating whether state-of-the-art view synthesis techniques are
suitable for creating 360◦ views. From our experiments, we observe
the following: First, current monocular methods hallucinate content
that may be inconsistent and unsuitable for wide-baseline 360◦ view
synthesis. Using stereo images allows the network to more accurately
synthesize views and estimate depth. Second, for 360◦ view synthesis,
point cloud renderings incur unnecessary sparsity in nearby objects
such as roads. Using mesh rendering better represents the underlying
visibility for 360◦ images. Based on these observations, we develop
OmniSyn which leverages 360◦ stereo depth estimation, mesh render-
ing, and 360◦ fusion to synthesize plausible 360◦ street view panoramas
from static scenes. We envision this line of research may give rise to
a wide range of virtual reality applications with depth-based real-time
interaction [16].
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