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Figure 1: We introduce Sensible Agent, a framework for unobtrusive interaction with a proactive AR agent. While the con-
ventional approach requires users to use voice prompts to instruct agents, SensibleAgent proactively prompts the user based
on context, toggles context-adaptive unobtrusive interactions, and suggests different types of queries based on the context.

Abstract
Proactive AR agents promise context-aware assistance, but their in-
teractions often rely on explicit voice prompts or responses, which
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can be disruptive or socially awkward. We introduce Sensible
Agent, a framework designed for unobtrusive interaction with
these proactive agents. Sensible Agent dynamically adapts both
“what” assistance to offer and, crucially, “how” to deliver it, based
on real-time multimodal context sensing. Informed by an expert
workshop (n=12) and a data annotation study (n=40), the frame-
work leverages egocentric cameras, multimodal sensing, and Large
Multimodal Models (LMMs) to infer context and suggest appropri-
ate actions delivered via minimally intrusive interaction modes. We
demonstrate our prototype on an XR headset through a user study
(n=10) in both AR and VR scenarios. Results indicate that Sensible
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Agent significantly reduces perceived intrusiveness and interac-
tion effort compared to voice-prompted baseline, while maintaining
high usability.

CCS Concepts
•Human-centered computing→Mixed / augmented reality;
Interaction techniques; User interface management systems.
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1 Introduction
As augmented reality (AR) and extended reality (XR) technologies
become increasingly embedded in everyday life via smart glasses
and head-mounted displays, researchers are re-imagining the roles
of AI agents. Going beyond simply reacting to users’ queries, these
agents are envisioned as proactive assistants, capable of anticipating
and responding to user needs in situ [34, 41]. Users often experience
moments of sensory or cognitive disruption, particularly when nav-
igating unfamiliar transit hubs or coordinating actions in crowded
public spaces, challenging traditional input-driven interfaces. These
moments call for agents that can assess user context and initiate
timely support—even when the user’s hands, eyes, or voice are
unavailable, thereby minimizing the need for explicit interaction.

Recent work has begun to explore proactive agents that sur-
face knowledge or suggestions without direct queries. For instance,
AiGet [8] utilizes smart glasses and largemultimodalmodels (LMMs)
to deliver incidental knowledge as users explore the world. How-
ever, AiGet is primarily designed for curiosity-driven engagement
in low-stakes, slow-paced environments. In contrast, many real-
world AR use cases involve time-sensitive, socially constrained, or
cognitively demanding scenarios where the relevance and delivery
of proactive assistance must be carefully tuned. In these settings,
the question is not just what to suggest, but whether, when, and
how it should be delivered. Figure 1 illustrates a motivating exam-
ple of this contrast: whereas conventional agents rely on explicit
voice commands in public, Sensible Agent unobtrusively adapts its
prompts and input modalities based on real-time context.

Through a formative study involving 40 participants and 960
context-varying scenarios, we found that user preferences for both
content and delivery modality vary widely depending on factors
like temporal urgency, environmental sensory load, social presence,
and task familiarity. For example, users in loud or crowded environ-
ments preferred subtle visual summaries over speech, while those
in solo, focused settings accepted more direct audio prompts. These
findings highlight the need for systems that treat proactivity as a

context-sensitive coordination problem across intent, modality, and
timing.

Prior systems address individual parts of this challenge. OmniAc-
tions [34] models user activity and context to recommend follow-up
actions using LLM-based reasoning, but focuses intent prediction
and digital workflow support rather than situated delivery. Hu-
man I/O [41] analyzes situational impairments, using multimodal
sensing to dynamically adapt interaction modalities, but it does
not address proactive intent generation or task-level reasoning.
Existing AR interaction techniques often hardcode modality map-
pings or rely solely on environmental triggers alone [7, 29, 67, 71],
limiting their responsiveness to nuanced shifts in user availability,
attention, and social context. Instead, we argue that, to be effective,
proactive agents must jointly infer both what to suggest and how to
present it, grounded in real-time user context and attentional load.
We argue that reasoning jointly over what to do and how to do it
is not simply additive but essential for context-aware AR agents.
A well-chosen modality cannot salvage an irrelevant suggestion,
and a helpful prompt may go unnoticed if delivered via an ill-suited
channel. This integration is particularly critical in socially sensitive
or attention-limited settings.

In this paper, we present Sensible Agent, a context-aware
proactive AR framework that adapts both the content (what) and
modality (how) of its interventions. The framework comprises two
modules: (1) an action suggestion module using few-shot and chain-
of-thought prompting with GPT-4o to recommend context-relevant
agent actions, and (2) a modality selection module determining the
most suitable delivery channel (audio, visual, gestural, or passive)
based on real-time multimodal input like gaze, ambient noise, hand
availability. Both modules are guided by a taxonomy of action
categories and context variants derived from our study, enabling
structured conditioning of LLM outputs and policy decisions.

Sensible Agent is implemented as a WebXR-based prototype
and evaluated on a diversity of realistic, daily scenarios presented
via an Android XR headset. Our evaluation includes: (1) quantitative
annotation of LLM outputs for action and modality appropriateness,
(2) real-time latency benchmarking, and (3) scenario-based system
demonstrations. We find that our dual-pipeline framework enables
proactive support that aligns more closely with user expectations
and contextual constraints than single-stream or modality-agnostic
alternatives.

In summary, we contribute:

• Sensible Agent, a context-aware, proactive AR agent
framework that minimizes user interaction effort by jointly
determining what to suggest and how to deliver it.

• A user-derived design implications of proactive actions
and context variants, collected from a workshop study and
a data collection study with 960 user responses across six
everyday activities.

• A functional prototype using WebXR, multi-modal sen-
sory input (e.g., hand gestures, head gestures, verbal com-
mand), and GPT-4o prompting to demonstrate modality- and
content-adaptive prompting behavior.

• A user evaluation (n=10) quantitatively and qualitatively
comparing agent outputs and delivery strategies during a
variety of realistic scenarios, presented via XR headset.
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Through this work, we take a step toward proactive AR systems
that assist unobtrusively, adapt to real-world social and sensory
contexts, and reduce the burden of communicating with intelligent
agents.

2 Related Work
This section reviews prior work in context-aware AR, proactive
agents, and multimodal interaction techniques. These areas collec-
tively inform the design of our framework for unobtrusive, context-
sensitive AR assistance.

2.1 Context-Aware AR
Context-aware AR—the ability to perceive and intelligently respond
to environmental cues like spatial layout, objects, conditions, and
user activity—is fundamental for creating effective and immersive
experiences. Recent advances in LLMs have significantly acceler-
ated the capabilities of context-aware AR by enabling richer envi-
ronmental understanding and more sophisticated spatial reasoning.
For instance, Yang et al. [77] conducted a comparative study of
Vision-Language Models (VLMs) to evaluate their spatial reasoning
capabilities, providing valuable insights for AR applications. Fur-
thermore, XaiR [61], developed by Srinidhi et al., bridges the gap
between large multimodal models and XR applications, while Xu et
al.’s XAIR framework for multimodal 3D fusion and in-situ learning
enables more sophisticated, spatially aware AI interactions [74].

Context-aware AR applications are emerging across various
domains. Examples include AI cooking assistants in AR [22, 31],
semantic enhancement of object interaction [14, 16, 19], dynamic
interface adaptation to context [36], and gaze-based and gesture-
based disambiguation [32]. While these AR applications advance
interaction with AI, they generally require explicit user input. In
contrast, we study unobtrusive, proactive AR, where the system
anticipates user needs and offers assistance that requires effortless
user interaction.

Commercial XR systems like Apple Vision Pro1 and Meta Quest
Pro2 offer rich multimodal input such as gaze, gestures, and voice,
but their agents remain reactive, relying on user-initiated com-
mands. These systems lack proactive agent behaviors that are con-
textually modulated based on user state, sensory availability, or
social setting. In contrast, Sensible Agent integrates proactive con-
tent suggestion with adaptive modality selection, enabling agents
to intervene in a timely and socially appropriate manner without
requiring explicit user input.

2.2 Agents and Proactivity
Proactive agents aim to enhance user experience by anticipating
needs and initiating interactions rather than solely reacting to ex-
plicit requests [42, 46, 73, 79, 82]. As outlined in a tutorial paper [39],
these proactive behaviors include learning to ask [5, 12, 37, 58, 68,
78, 83, 84], topic shifting [27, 38, 63, 75] and strategy planning with
reinforcement learning, counterfactual dialogue act, and label gen-
eration [2, 10, 37, 45, 64, 65]. For implementing proactive behaviors,

1Apple Vision Pro: https://www.apple.com/apple-vision-pro/
2Meta Quest Pro: https://www.meta.com/quest/quest-pro/

multiple choice question answer [57] allows us to define the prob-
lem as next-token prediction aligning well with LLM loss functions
and training data.

Beyond these core behaviors, various systems demonstrate proac-
tive capabilities in specific contexts. Parse-Ego4D [1] offers personal
action recommendation annotations. Satori [33] proactively guides
users by modeling their mental states and environmental context in
AR. YETI [3] learns scene understanding for potential intervention.
Less or More [69] presents glanceable LLM explanations on smart-
watches. COWPILOT supports web navigation [21] by suggesting
next steps users can take. Similarly, OmniActions [34] predicts and
suggests users action based on multimodal sensory inputs, such as
images and audio. The system is triggered by certain actions such as
scanning text or the event of taking a picture. While OmniActions
focuses on predicting potential user follow-up actions primarily
for digital workflow support, our work centers on the challenge of
situated delivery. Sensible Agent adapts not only “what” assistance
to offer, but crucially “how” to present it via unobtrusive modalities
selected based on real-time multimodal context sensing.

Other research explores proactive engagement for specific user
needs. ComPeer is a text-based conversational agent that actively
pings users based on previous conversation data and context to
provide companionship andmental support [40]. Needs Companion
defines a data model for service needs and uses a VA and LLM for
needs elicitation and analysis through voice dialogue [48]. Zhang
et al. leverages generative agents in a role-playing game to guide
users to follow certain actions and in consequence elicit behavioral
change such as environment-friendly behaviors [80]. However,
these works primarily focus on proactively guiding or intervening
with users. In contrast, we center on minimizing interaction friction
by adapting “what” assistance to offer and, crucially, “how” to
interact based on real-time multimodal context sensing.

2.3 Feedback Channels in Human-Agent
Interaction

Effective communication in human-agent interaction relies not
only on the agent’s output but also on the user’s ability to provide
appropriate, timely feedback. Prior research has explored a range
of modalities through which users can signal feedback, ranging
from explicit, intentional utterances to subtle paralinguistic and
non-verbal cues.

2.3.1 Explicit feedback. Explicit input methods, such as spoken
or typed commands, remain the primary means by which users
provide feedback to voice-based agents. Diederich et al. [13] identify
communication modality—voice, text, or both—as a central design
dimension of conversational agents, enabling users to issue requests,
confirmations, or corrections in natural language. Seymour and
Van Kleek [59] highlighted the impact of speech as an interaction
affordance and described how the shift to conversational interfaces
has made interactions with assistants more social in nature.

2.3.2 Whispering. Whispering has emerged as a modality that en-
ables private or low-disruption interactions with voice assistants.
Cho [11] examined how whispering affects user perceptions when
querying sensitive health information. They found that whisper-
ing increased perceptions of social presence and comfort under
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low-sensitivity conditions. Rekimoto [55] introduced DualVoice,
a whisper-classification mechanism that distinguishes between
whisper and normal speech to support mode switching, e.g., whis-
pering for commands and speaking normally for content input. In
a follow-up work, the same author introduced WESPER [56], a sys-
tem capable of converting whispered speech into audible speech in
real-time, enabling silent, unobtrusive interactions in public spaces.

2.3.3 Paralinguistic feedback. Paralinguistic feedback includes non-
lexical conversational sounds (NLCS), such as “mm-hm”, “uh-huh”,
and “oh”, which convey a range of social cues. Ward [70] identified
several categories of such sounds including acknowledgements, af-
firmation, disagreement, hesitation, and realization. These cues can
express user feedback implicitly, signaling engagement, confusion,
or alignment and can serve as an unobtrusive input method for
users to provide feedback.

2.3.4 Non-verbal feedback. Emerging interaction contexts—such
as walking, multitasking, or using devices in public—necessitate
alternative input modalities beyond traditional hand or voice input.
For instance, Cho et al. [11] examined how users whisper to voice
assistants when discussing sensitive health topics, finding that
whispering fosters a greater sense of privacy and comfort. Here, we
can see that the role of modality is not only in enabling interaction
but also in shaping the social acceptability of agent use across
contexts.

While walking, traditional interaction techniques such as hand
gestures can be unreliable. Zhou et al. [81] found that pinch ges-
tures take significantly longer to execute when users are in motion,
and hand input may be unavailable entirely when users are car-
rying items or wearing gloves. To address this, researchers have
investigated hands-free input methods that are less sensitive to
body posture or hand availability. These include intraoral input
using tongue or lip movement [23], and silent speech recognition
through capacitive dental interfaces [25], though these approaches
often require specialized hardware.

Other techniques leverage full-body motion during ambulation.
Gaze input has been explored for hands-free cursor control, but may
divert attention from environmental hazards, introducing safety
concerns. In response, several works have explored interaction
strategies tailored for mobile AR use. Lages and Bowman [30] pro-
posed interface adaptation techniques for AR transitions during
walking. Müller et al. [47] introducedWalkType, which maps lateral
walking shifts to interface selection by rendering options as paral-
lel paths on the ground. Kumar et al. [28] extended this technique
by combining footpath gestures with gaze for secure AR headset
authentication. More recently, GaitGestures [66] demonstrated that
intentional changes in stride length and foot strike can be used as
a low-effort, hands-free input method during locomotion.

Head-based input has also been explored as a socially acceptable
and minimally disruptive modality. Tanenbaum et al. [62] use head
rotation to control avatar facial expressions, while commercial
systems like AirPods Pro incorporate simple head gestures for call
handling. Prior research has also shown that nodding or pointing
the nose can enable discrete UI selection[26] and even serve as
an authentication mechanism [35], making head gestures a viable
modality for subtle, context-aware interactions in AR.

2.4 Interacting with AR in public
Integrating AR devices into public settings presents unique chal-
lenges concerning user comfort and social acceptability. Addressing
these factors is crucial for facilitating seamless and comfortable
public interactions with AR technologies.

Recent studies have explored the social dynamics of AR usage
in communal environments. For instance, Kaeder et al. [24] investi-
gated how different virtual display layouts affect users’ perceived
productivity, feelings of safety, and social acceptability when work-
ing with mixed reality in public spaces.

Similarly, Pavanatto et al. [52] examined both user and bystander
experiences of XR displays in real-world settings. The study re-
vealed that while users generally accept XR technology in public,
factors such as previous XR experience and personality traits can
impact perceptions.

Lu and Bowman [43] introduced the concept of Glanceable AR
interfaces, designed to provide users with quick, unobtrusive ac-
cess to information through peripheral displays. Their in-the-wild
evaluations demonstrated that such interfaces are less distracting
and more socially acceptable for everyday tasks in public settings.
Incorporating these insights, our framework emphasizes the de-
velopment of AR interactions that are not only functional but also
socially considerate. By focusing on user-centric design principles,
we aim to facilitate AR experiences that users can comfortably and
confidently engage with in public settings.

Informed by this prior work on feedback channels, we introduce
Sensible Agent. Our framework focuses on unobtrusive proactiv-
ity by dynamically adapting both “how” assistance is delivered
and “what” feedback modalities are supported, based on real-time
multimodal context.

3 Workshop Study
To explore users’ motivations and scenarios in which they would
require a proactive AR agent, as well as their preferred interaction
methods, we conducted a workshop study.

3.1 Study Procedure
We recruited 12 participants internally from Google with diverse
backgrounds (engineers, designers, researchers, students). Thework-
shop began by introducing proactive AR agents, contrasting them
with the existing user-prompted AR agents (illustrated via a Project
Astra [17] video). Using a shared digital whiteboard, participants
brainstormed over two structured ideation rounds, each addressing
a specific research question:

• RQ1:What types of proactive queries would users like the
agent to initiate? Specifically, in what situation should the
agent act, what action or query should it perform, and why
is proactive behavior necessary?

• RQ2: How should users interact with the agent in public
settings? This included considerations of both the output
modality (how the agent should present its proactive queries)
and the input modality (how users would respond).

In each round, participants had 10 minutes to reflect and post
ideas, followed by group discussion to present and aggregate thoughts.
Two moderators ensured equal participation and captured key
points. The workshop lasted approximately one hour.
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3.2 Findings
We conducted a thematic analysis of responses, drawing on design
space frameworks from prior art [44, 76]. We focused on contexts
where users desired proactivity, the actions they expected, and
their reasoning. These findings shaped our framework’s “what” and
“how” modules. These findings shaped the design of our framework,
particularly how the agent determines “what” to do and “how” to
present it. Participants are denoted as W1–W12.

3.2.1 When do we need proactive AR agents?
Participants described scenarios in which they expected agents to
anticipate needs and act without explicit input. Across 12 partici-
pants and 45 scenarios, six recurring contextual factors emerged:

Repetitive, PredictableActivities (n=9). Participants described
routine scenarios in which their next actions were both predictable
and repetitive. They expressed frustration with having to repeat-
edly issue explicit commands for tasks they perform frequently. For
instance, W1 noted, “I have daily routines such as taking a bus and
playing Spotify. In this case, the agent should learn this and suggest
it first when I get on the bus”.

Public or Socially Awkward Situations (n=6). Participants
noted that verbal interaction was socially uncomfortable or inap-
propriate in public or quiet environments (e.g., libraries, cafes).

Uncertainty or Lack of Awareness (n=4). Participants de-
scribed situations in which they were unsure what assistance to
request or unaware of the agent’s available capabilities. In these
cases, proactive suggestions were seen as beneficial. W9 mentioned:
“Sometimes, I don’t even know what’s possible to ask; proactive sug-
gestions would help me discover useful actions.”

Unfamiliar Environments or Activities (n=5). Participants
desired proactive guidance in new settings or during unfamiliar
activities, such as visiting a new city or starting a hobby. Some
emphasized the need for varied suggestions in these situations (W6,
W7, W10).

Time-sensitive Scenarios (n=4). Participants identified high-
pressure contexts (e.g., rushing to catch transport) as prime oppor-
tunities for proactive assistance. W5 said: “When I’m rushing, I don’t
have the mental capacity to have a full blown conversation with an
agent.”

These findings illustrate the necessity of considering contextual
variables like familiarity, social environment, urgency, and uncer-
tainty to effectively shape what proactive actions the agent should
suggest.

3.2.2 What do we want proactive AR agents to do?
We found significant overlap between the contexts of when and
participants’ suggestions for what the agent should do. However,
participants also explicitly articulated desired proactive actions:

InformationDelivery (n=11).Delivering relevant context-aware
information without explicit user query (e.g., translating menus,
recognizing landmarks, or offering pronunciation feedback in lan-
guage learning).

Reminders and Notifications (n=9). Nudging users about for-
gotten intentions or events based on routine or temporal triggers
(e.g., picking up medication, sending messages when late, stocking
household items).

Suggestion and Option Surfacing (n=6). Offering creative or
exploratory ideas when users have no concrete goals (e.g., sug-
gesting interior decor, restaurant options, or AR visualizations for
artwork).

Error Detection and Guidance in Tasks (n=5). Providing
real-time guidance during procedural or skill-based tasks when
users pause, struggle, or deviate (e.g., correcting instrument finger-
ing, helping with furniture assembly, pointing out cooking errors).

Environment or Object Control (n=4). Automatically inter-
acting with physical or digital systems based on routine or context
(e.g., turning off lights, logging food, muting phone calls while
driving).

While specific actions varied, participants consistently preferred
contextually timed, non-intrusive suggestions that reduced the
burden of remembering, navigating UIs, or formulating questions.

3.2.3 How do we want to interact with proactive AR agents? Par-
ticipants emphasized the need for unobtrusive, contextually appro-
priate interaction methods:

Hand Gestures (n=10). Participants frequently suggested hand
gestures as subtle means of interaction but explicitly noted limita-
tions when engaged in hand-intensive tasks.

Head Gestures (n=5). Simple head movements such as nod-
ding, shaking, or slight tilting were popular due to their subtlety
and intuitive nature. “If the agent asks a simple yes-no question, I
could just slightly nod or shake my head without anyone noticing,”
explained a participant (W7).

Gaze-based Interactions (n=5). Gaze inputs like blinking or
gaze-dwelling were identified as useful, especially when hands were
unavailable or the user wished to interact privately.

Subtle Auditory Inputs (n=4). Participants suggested NLCS
and whipsering as an alternative for a less intrusive way than overt
speech.

Integrated Activities (n=3). Some participants proposed em-
bedding response to proactive suggestions into ongoing activities
(e.g., continuing a task as implicit confirmation).

Nine participants explicitly or implicitly referred to Situation-
ally Induced Impairments and Disabilities (SIIDs) [41, 72], which
influenced their preferences for both how the agent should present
itself and how they would interact with it.

3.3 Design Implications
Our findings suggest that users’ expectations for proactive AR
agents are shaped not only by the activity at hand but also by fine-
grained situational factors that influence the relevance of proactive
actions (what) and the appropriateness of interaction modalities
(how).We outline five key design implications that directly informed
our framework:

(1) The same activity may require different proactive be-
haviors based on contextual variants. Participants often de-
scribed repeated tasks (e.g., navigating an airport, visiting a mu-
seum) where the proactive action varied depending on environmen-
tal familiarity, time pressure, or social setting. This suggests that
static task-based modeling is insufficient. Proactive systems must
account for how variations in context shift the user’s expectations.
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Figure 2: Detailed dataflow of the Sensible Agent framework. An ACTION RECOMMENDATION MODULE ( WHAT ) takes user context
and determines the suggested action in one of three primary formats, and an INTERACTION ADAPTION MODULE ( HOW ) selects pre-
sentation modality and input modalities.

Our framework addresses this through a context similarity mod-
ule in the what pipeline, allowing the system to adapt actions to
nuanced differences across similar scenarios.

(2) Social engagement andpublic settings significantly con-
strain interaction modalities. Participants expressed reluctance
to interact with agents via speech or overt gestures in socially
sensitive environments (e.g., meetings, public transit). This high-
lights the need to reason about social acceptability—not just sensor
availability—when choosing output and input modalities. In our
framework, this is addressed by incorporating social engagement
as an explicit factor in determining interaction modality.

(3) Temporarily impaired input/output channels are com-
mon in everyday settings. Rather than permanent disabilities,
participants frequently described moments where they were vi-
sually, audibly, or physically unavailable due to the activity (e.g.,
eating, driving, holding an object). These temporary impairments—
also described in prior work such as SSID [41]—should be treated
as first-class input to the system. Our framework integrates this
insight into the how module, enabling dynamic modality selection
based on real-time multimodal sensing.

(4) Users welcome suggestion diversity when uncertain,
but prefer precision when familiar. When participants were
unsure of their goals or facing novel tasks (e.g., decorating a room,
visiting a museum abroad), they welcomed diverse suggestions. In
contrast, familiar routines called for focused, streamlined actions.

In response to this, our system’s suggestion generation module
varies the breadth and structure of proactive queries (e.g., binary
vs. multi-choice) depending on user familiarity with the activity.

(5) Embedded, multimodal confirmations lower friction
in high-effort scenarios. Participants often preferred confirming
or rejecting proactive suggestions through natural, low-effort be-
haviors (e.g., nodding, gaze dwelling, continuing the current task).
This indicates that confirmation should be implicitly embedded in
the interaction rather than handled through explicit follow-ups.
Our interaction module prioritizes combining multimodal signals
(head, hand, voice, gaze) to enable confirmation mechanisms with
minimal cognitive or physical effort.

4 Sensible Agent: A Framework for
Context-aware Unobtrusive Proactive Agents

We present Sensible Agent, a framework for building proac-
tive AR agents that prioritize unobtrusive interaction and minimal
user effort. Unlike traditional systems that rely on user-initiated
queries, our framework is designed to anticipate user needs and
respond proactively, while adapting both the content and delivery
of suggestions to situational context.

The framework consists of two interdependent reasoning mod-
ules, as illustrated in Figure 2: the ACTION RECOMMENDATION MODULE

(What) and the INTERACTION ADAPTION MODULE (How). While our
6
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prototype implements the core components of both modules, cer-
tain capabilities such as context similarity based on long-term user
history are part of the envisioned design and discussed as future
directions.

4.1 Action Recommendation Module (What)
This module determines what actions the agent should proactively
suggest in a given context. It is designed to anticipate user intent
and reduce decision-making burden by tailoring suggestions to
situational cues and prior behavior.

User Context Adaption. The CONTEXT SIMILARITY MODULE uses
the current user context, extracted in real time and encompassing dimensions
such as activity and location familiarity, perceived cognitive load, social
engagement, and temporal urgency. In the framework, it also draws on a
user context history and prior user actions, enabling the system to learn from
repeated patterns or behavioral regularities.

LMMReasoning. Based on the current context—and user history of sim-
ilar context—the PROACTIVE ACTION MODULE not only determines what
action(s) to suggest but also selects the most appropriate presentation format.
We define three three primary formats, ordered from most to least effort
for the user:

• Multi-choice Selection: Presented when several possible actions
may be contextually appropriate, allowing the user to choose from.

• Binary Confirmation: Employed when a single action is predicted
with high confidence, but explicit user confirmation via a ‘yes’/‘no’
respond is required.

• Icon-based Cue: Deployed for highly probable, low-stakes actions
where user intent is inferred with very high confidence. The agent
proactively visualizes a relevant graphical icon (e.g., a translation/menu
icon) in peripheral region, affording user interaction with minimal
interruption.

4.2 Interaction Adaption Module (How)
This module determines how the proactive suggestion should be delivered
and how the user should interact with it, based on real-time input/output
availability and context-driven appropriateness.

User Context Adaption with I/O Channels Availability. The HOW

module shares the same core user context extracted for the WHAT module
but further considers input-related context, such as whether the user’s hands
are occupied, their environment is noisy, or they are engaged in conversation.
These additional cues reflect situationally induced constraints that affect
interaction feasibility.

User Input Similarity.While not yet implemented, INTERACTION CON-
TEXT SIMILARITY MODULE envisioned component would compare current
input-related context to prior interaction patterns, helping refine modality
decisions based on similarity to previously successful input conditions. This
design is informed by the concept of SIIDs [41], which describe temporary
constraints on user input/output channels.

Presentation Strategy. The QUERY PRESENTATION MODULE selects
how the agent’s proactive suggestion is presented to the user, choosing
from:

• Visual-only: On-screen UI elements, icons, or overlays.
• Auditory-only: Spoken messages or system voice prompts.
• Audio-visual: Redundant or complementary presentation across
both channels.

Presentation strategy is determined based on environmental and social
context. For example, in a quiet or very noisy public setting, the agent may
suppress audio and rely on visuals, while in visually demanding tasks (e.g.,
biking), auditory prompts are prioritized.

InteractionModalityAdaption.The INTERACTION MODALITY MODULE
determines which input modalities are enabled for confirming or responding
to proactive suggestions. It considers both the user’s input-related context
and the selected presentation strategy. For instance, if the output is visual-
only and the user is not looking at the screen, gaze-based input is not viable.
Modalities supported include:

• Gaze (dwell): Used for visual interfaces, enabling binary or multi-
choice input by tracking where the user looks. Buttons are triggered
by holding still for one second.

• Hand gestures: Uses explicit gesture recognition (e.g., open palm,
fist) rather than raycast-based pointing, enabling confirmation or
selection even when direct targeting is not feasible.

• Head gestures: Supports nodding and shaking for binary prompts,
and directional tilting (e.g., left, right, backward) for multi-choice
selection.

• Voice input: Enables spoken responses using lightweight verbal
commands. For binary interactions, users may respond with natural-
istic non-conversational lexical sounds (NCLS) such as “uh-huh” or
“mmm-mm.” For multi-choice prompts, the agent supports one-word
commands such as “one,” “two,” or “three.”

These input modalities can be used independently or in combination,
depending on user availability and task constraints. The design prioritizes
interaction methods that are socially acceptable and impose minimal cogni-
tive or physical load.

4.3 Module Integration
The two modules operate in parallel and share context inputs. The WHAT
module determines the structure and content of the suggestion, which then
informs the HOW module’s choice of presentation and interaction modality.
For instance, a multi-choice suggestion during a high-cognitive-load task
may trigger a visual interface with hand gesture input, whereas an icon-
based prompt during a routine task may use gaze-only interaction.

Together, these modules support a context-aware proactive agent that
adapts not only to what the user needs, but how they can most easily
engage. In the following section, we describe how we implemented the core
components of this framework in a functional prototype and outline the
system capabilities currently supported.

5 Prototype Implementation
We implemented a WebXR-based working prototype of our context-aware
proactive AR agent system, focusing on the core modules identified in
our framework: the proactive action module and the adaptive interaction
modality module. Our system leverages LMMs to infer real-time context
and generate proactive suggestions and interaction strategies accordingly.

We describe the overall architecture and interaction flow of the system,
followed by details of our data collection study, which informed the agent’s
suggestion generation logic.

5.1 System Architecture
Figure 3 illustrates the architecture of our prototype. The system operates on
egocentric video input, which can come from a real-time video see-through
(VST) stream through Android’s Camera2 API3 or a 360° pre-recorded video.
The latter is primarily used to simulate environmental contexts in controlled
study conditions where live capture is not feasible.

When a trigger event is detected–such as a pause in activity or gaze
fixation–a single image frame is extracted and sent to the system’s reasoning
pipeline. This pipeline consists of three layers: a context parsing layer, a
proactive query generation layer, and a response generation layer. Each

3Camera2 API: https://developer.android.com/media/camera/camera2
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Figure 3: System architecture of our proactive AR agent prototype. The full system is implemented in WebXR with support
for real-time interaction in 360◦ videos or video see-through AR environments. The system processes visual and audio input
(1) and parses contextual attributes such as familiarity, urgency, and environmental noise using a VLM and YAMNet. (2) Based
on the parsed context, the proactive query generator formulates a suitable suggestion, including its agent action, presenta-
tion modality, and query type. These are passed to the interaction module, (3) where the UI manager renders the query and
the (4) input modality manager enables one or more input modalities (e.g., gaze, hand, head, voice) based on feasibility and
appropriateness. The interaction module then forwards the selected option by the user to the (5) response generator.

layer operates using GPT-4o, conditioned through in-context learning with
structured input examples derived from our data collection study.

Context Parsing. The first layer uses the visual input along with manually
injected user-specific variables, such as task familiarity or temporal urgency,
to identify key contextual attributes. These include physical environment
(e.g., type of space), user state (e.g., hands occupied, conversational setting),
and social or environmental constraints (e.g., noise level, presence of oth-
ers). This layer simulates the role of the context similarity module in our
framework, although it does not perform explicit similarity computation
across historical data. We use Chain-of-Thought (CoT) prompting here to
extract structured outputs through intermediate reasoning steps, enabling
more accurate context decomposition.

Proactive Query Generation. The output from the first layer is passed
to the second layer, which generates the proactive query the agent should
present. This includes three elements: the action content (e.g., suggesting
information or assistance), the query format (multi-choice, binary, or icon-
based), and the suggested presentation modality (visual, auditory, or both).
Although our framework initially distinguishes between the WHAT and
HOW modules, we found that the decision around presentation modality
is closely entangled with the action content and context. As such, this
component is computed together with the query in the second layer, while
the input modality constraints are handled downstream.

Interaction Module. The UI manager then constructs a panel interface
or an audio playback using OpenAI’s text-to-speech (TTS) API [51] based

on the generated suggestion and modality. At the same time, the parsed
context is sent to the input modality manager, which enables a subset of
input modalities. These include head gestures, hand gestures, gaze (via
dwell), and verbal inputs. Each modality is gated based on two criteria:
the inferred contextual appropriateness (e.g., SIIDs [41]) and the feasibility
given the chosen output modality . For example, if the context suggests
that the user is in a noisy public setting, voice input is disabled and visual
interactions such as gaze or head gestures are prioritized. Similarly, if a
query is presented solely in audio form, gaze interaction is considered
infeasible and suppressed.

Response Generation Layer. Once the user confirms or selects an option
from the proactive prompt, the system passes both the structured context
and the selected action to an LLM (GPT-4o) to generate a natural language
response. This response serves as the agent’s follow-up behavior, grounded
in the user’s selection (e.g., providing details about a painting the user is
viewing in a museum). The generated utterance is then synthesized via TTS
and played back through the headset’s audio channel.

5.2 Proactive Actions Data Collection Study
To support context-aware query generation in our proactive agent sys-
tem, we conducted a data collection study designed to elicit how users’
expectations of agent behavior vary based on situational context. This
study informed the core reasoning mechanism of our system by providing
grounded examples of context-action-modality mappings, which were later
used to condition an LLM through in-context learning.
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1a

1b

1c

1d

2a 2b 2c

3a 3b

Step 1. Enter a desired proactive AR agent action in the given scenario

Step 2. Select query type (edit if needed) 

Step 3. Rate usefulness & preferred presentation modality

Converted
via LLM

Recommend me a recipe with the ingredients in front of me

Figure 4: Web interface for the data annotation study. Each participant annotated 24 scenarios through a 3-step workflow. In
Step 1, participants viewed: (1a) a short text describing the scenario, (1b) a synthetic egocentric image for visual consistency, (1c)
contextual details (e.g., location, engagement), and (1d) a text input field to describe the desired proactive AR agent action. In
Step 2, the input was converted into (2a) multi-choice, (2b) binary, and (2c) icon-style queries using GPT-4o. Participants could
edit or choose their preferred query type. In Step 3, they (3a) rated the usefulness of the action and (3b) selected the preferred
presentation modality (audio, visual, or both). Final responses were exported as a CSV after completing all 24 scenarios.

Web-Based Annotation Interface. We developed a custom web-based an-
notation interface (see Figure 4) that presents participants with egocentric-
view scenarios. Each scenario consisted of a synthetic image paired with a
one- to two-sentence description simulating an immersive AR context. To
ensure interpretability and consistency, we also provided optional structured
descriptors–such as location, detected high-level activity, user engagement,
and environmental or social context–displayed in a collapsible panel. These
served as objective reference points for participants, complementing the
visual and narrative descriptions.

Participants were asked to imagine themselves in each situation and
enter, in free-text form, what they would want a proactive AR agent to do
or ask on their behalf. Upon submission, GPT-4o was used to reformat the
user-described action into three proactive query forms: multi-choice, binary,
and icon-based. Participants could revise the generated phrasing and select
the query form they felt was most appropriate for the given context. They
were also asked to rate how useful they believed the proactive suggestion
would be in the scenario on a five-point Likert scale, and to specify their
preferred modality of presentation (audio, visual, or both). Participants
could navigate between scenarios at any point and revise their annotations.

Presented Scenarios. The study included 48 scenarios, each representing
a variant of one of six high-level activities commonly encountered in daily
life: reading a menu at a restaurant, working out at a gym, grocery shopping,
browsing in a museum, commuting by public transportation, and cooking
in a kitchen. Each activity contained 5 to 8 contextually distinct variants,

which were designed to reflect factors such as location and activity famil-
iarity, situational impairments (e.g., hands occupied), social constraints, and
temporal urgency. Each participant annotated 24 scenario of three selected
high-level activities, with the task taking approximately 30 to 40 minutes to
complete.

Participants. We recruited 40 participants through internal mailing lists
and social platforms. Participants varied in age (21 - 44) and background
and included individuals with prior experience using AR headsets or glasses
(34 out of 40). On average, participants reported a 𝜇 = 3.97mean experience
with AR and 𝜇 = 3.57 with voice assistants on a 5-point Likert scale.

5.2.1 Results and Analysis. We analyzed 960 query entries from 40 partici-
pants (24 per person) across six high-level activities and their contextual
variants. Our analysis focuses on (1) consistency in query preferences, (2)
variation in query type and presentation modality by context, and (3) a
taxonomy of desired proactive actions. (Figure 5)

Dataset OverviewWe analyzed a total of 937 proactive action entries
from 40 participants across 48 scenarios. Each participant encountered sce-
narios drawn from six high-level activity types—menu reading, cooking, vis-
iting amuseum, commuting, working out, and grocery shopping—embedded
in varied contextual conditions such as familiarity, temporal urgency, or so-
cial engagement. For each scenario, participants (1) described their desired
agent action, (2) selected a preferred query type (binary, multi-choice, or
icon), (3) chose a presentation modality (audio, visual, or audio+visual), and
(4) rated the usefulness of the action. We discarded 23 entries that received a

9
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Figure 5: Distribution of data entries in selected presentation modes (left) and query types (right) across different high-level
activities and context variants. Data showed varying preferences for modality (audio, visual, audiovisual) and query format
(binary, multiple-choice, icon-based) depending on situational demands and activity type.

usefulness rating of 1, indicating an intention to remain passive or rejection
of agent assistance.

Query Format is Shaped by Contextual Demands Query type selec-
tion was highly context-sensitive. Overall, multi-choice (𝜇 = 0.38, 𝜎 = 0.06)
and binary queries (𝜇 = 0.32, 𝜎 = 0.07) were more frequently preferred than
icon-based options (𝜇 = 0.22, 𝜎 = 0.11) across high-level activities. However,
preferences shifted meaningfully across context variants.

In unfamiliar or cognitively demanding scenarios, users often favored
multi-choice formats to explore alternative paths or receive richer input
from the system (𝜇 = 0.37, 𝜎 = 0.06). For example, one participant in an
unfamiliar restaurant context selected the query, “Translate dish names,
show images, suggest the most popular dish,” in a multi-choice query and
rated highly useful (5/5). On the other hand, binary queries were more
common under time pressure or when rapid clarification was needed (𝜇 =
0.38, 𝜎 = 0.11), such as, “Order my usual or recommend a new item?”

Icon-based formats, though less common overall, emerged in socially
sensitive (𝜇 = 0.42, 𝜎 = 0.10) or familiar environments (𝜇 = 0.21, 𝜎 = 0.13)
where minimal interaction was desired. In one such instance, a participant
requested, “Listen to the crowd and find me the most popular item,” during a
busy dining setting, paired with an icon query and visual presentation.

These findings suggest that the agent’s querying mechanism should
be sensitive to both task complexity and situational constraints, offering
lower-friction formats in fast-paced or public-facing contexts while enabling
richer interactions when users have time and attention to spare.

Presentation Modality Vary by Contextual Constraints
Across all scenarios, the majority of participants preferred audio-visual
presentation (𝜇 = 0.38, 𝜎 = 0.03), likely due to the redundancy and clarity it
offers. However, this preference was not universal.

In socially dense or quiet public settings, such as museums or restaurants,
users gravitated toward visual-only queries. For example, in a crowded
museum, one user asked the agent to “Show artwork info I am looking at,”
choosing visual-only presentation for discretion. On the other hand, audio-
visual modalities were favored in unfamiliar or time-constrained scenarios,
where rapid and clear communication was necessary—e.g., “Suggest fast
options I can eat from the menu I am looking at.”

These results reinforce the need for modality adaptation in agent design,
modulated by situational context and the user’s social environment.

Query Format Stability within Task CategoriesWe analyzed query
type consistency across contextual variants of each activity. A participant’s
query type was considered consistent for a task if it appeared in at least
80% of the contextual variants for that activity. Out of 240 possible activity-
participant pairs, 23 met this criterion.

This relatively low consistency rate indicates that users do not adopt a
one-size-fits-all querying strategy. Instead, they fluidly adjust their prefer-
ences depending on the situation—supporting the notion that context-aware
query adaptation is critical for proactive systems.

Taxonomy of Desired Proactive Agent Actions To enable down-
stream modeling and few-shot prompt engineering, we developed a two-
layer taxonomy from participants’ free-text responses.

At the first level, we identified core action categories, including Suggest,
Remind, Guide, Summarize, Automate, Augment, Recall, and Take App Action.
For instance, a participant in a cooking scenario requested, “Detect my step
and display the next one”, which was categorized as a Guide action.

At the second level, we derived contextual subcategories that modu-
late these actions, such as Familiarity-Based, Urgency-Based, Social Coordi-
nation, Cognitive Load, and Sensory Disruption. For example, one participant
in a visually constrained setting asked the agent to “brighten the menu and
read items aloud,” which combines Augment with Sensory Disruption.

A list of context subcategories and action types as well as the distribution
among annotated data is shown in Appendix A. We use the context-action-
modality mappings to construct few-shot prompts that enable in-context
learning of proactive suggestions tailored to user context.

5.2.2 Context-Conditioned Query Reasoning with In-Context Learning. To
generate context-appropriate proactive agent behavior, we implemented
an in-context learning pipeline using GPT-4o. Rather than relying on fixed
rules or templates, this module adapts to novel situations by conditioning
on structured representations of user context. It outputs a proactive action
category, query type, and presentation modality. The querying strategy
draws on our dataset of 937 annotated examples and our taxonomy of user
preferences (§5.2.1).

Structured Input and Prompt Format. Each input to the language
model consists of three components: (1) a structured natural lan-
guage description of the current context, (2) multiple few-shot
examples from our study, and (3) a task instruction. Few-shot ex-
amples are composed of three fields:

• Context: A natural language description combining rele-
vant situational dimensions such as high-level activity (e.g.,
cooking, commuting), physical location (e.g., kitchen, mu-
seum), environmental factors (e.g., noise, crowd density),
user engagement (e.g., hands occupied, visually focused), so-
cial context (e.g., alone or with others), and task familiarity
or urgency (e.g., rushing, first-time visit).

• Reasoning (Chain-of-Thought):Abrief rationale that con-
nects salient context features to interaction considerations—e.g.,
decision complexity, input/output availability, or social norms.
These reasoning lines were manually authored based on de-
sign patterns extracted from our user study, and serve as
Chain-of-Thought (CoT) scaffolds for the model.
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Context Description CoT Reasoning Agent Suggestion Query Type Modality

User is in a museum, crowded with people
and slightly noisy, while engaged with an
art piece.

User may not hear audio clearly and is vi-
sually focused on the artwork. A visual,
low-effort query is ideal.

Show a visual icon near the artwork of-
fering more information (e.g., title, back-
ground).

Icon Visual

User is in a familiar grocery store but is in
a rush, quickly moving through aisles.

User’s gaze is shifting frequently; visual
queries may be missed. Audio is preferred.

Speak a binary question: “Would you like
to hear your grocery list?”

Binary Audio

User is alone in a new restaurant, unfamil-
iar with the menu. The space is quiet and
not crowded.

User may need help deciding what to order
andmay benefit from both visual and audio
support.

Display a multi-choice panel with recom-
mendations (e.g., “Top dishes,” “Vegetarian
options,” “What I had last time”) along with
audio narration.

Multi-choice Audio + Visual

Table 1: Representative Few-Shot Examples for Context-Conditioned Query Reasoning

• Agent Suggestion: A structured prediction consisting of
(a) an agent action (e.g., Recommend, Guide), (b) a query
format (binary, multi-choice, or icon), and (c) a presentation
modality (audio, visual, or audio+visual).

For instance, a complete triplet might include:
• Context: “User is in a grocery store, browsing aisles alone,
holding a shopping cart, and navigating quickly in a noisy,
crowded setting.”

• Reasoning: “Because the user is rushing and both visually
and physically engaged, a binary audio prompt reduces in-
teraction load.”

• Agent Suggestion: Recommend | Binary | Audio
This triplet structure enables the model to imitate the logic un-

derlying design-relevant decisions in human-agent interaction.

Few-Shot Prompting. We use a few-shot prompting strategy with
3–5 exemplars per query. These examples are selected from a fil-
tered pool of 937 entries based on contextual similarity—matching
on high-level activity and at least one overlapping dimension (e.g.,
SIID trigger, social engagement, or familiarity). Although our output
space (combinations of agent actions, query types, and modalities)
is large, our goal is not to exhaustively cover all possibilities. In-
stead, we provide the model with representative reasoning scaffolds,
derived from our study, that help it generalize context-to-decision
mappings.

The task prompt provided to the model is:
Given a user’s current context, generate:

(1) a reasoning for your decision,
(2) the recommended agent action,
(3) a query format (binary/multi-choice/icon), and
(4) a presentation modality (audio/visual/audio+visual).
Use the format shown in the examples.

We found that using six examples balanced diversity and token
length under GPT-4o’s input constraints.

Runtime Inference and Output Integration. At runtime, a light-
weight context parser extracts scenario tags or simulated sensor
values (e.g., user engagement, noise level) and composes them into
a natural language context string. This is combined with selected
few-shot examples and passed to the LLM.

The model outputs:
• An agent action (e.g., Recommend, Guide, Automate)
• A query type (binary, multi-choice, or icon)
• A presentation modality (audio, visual, or audio+visual)

We apply simple string parsing to extract these outputs, which
are then passed to the agent interface for real-time use. Table 1

provides representative triplets used in the prompt, illustrating how
structured reasoning leads to differentiated behavior across context
variants. Details on system latency and query generation timing
are provided in Appendix B.

Figure 3 shows the overall system pipeline, including context
parsing, query assembly, inference, and agent response integration.

5.3 Interaction Modality Implementation
To support unobtrusive interaction in a variety of contexts, we
implemented four input modalities: voice, head gestures, hand ges-
tures, and gaze. All interaction methods were developed using
WebXR4 and three.js5, and run in Chrome v137 on an Android XR
headset.

5.3.1 Verbal Interaction. We implemented verbal input using the
Web Speech API, specifically the ‘SpeechRecognition’ interface. The
recognition system operates in a limited vocabulary mode, accept-
ing discrete responses such as YES, NO, ONE, TWO, and THREE, corre-
sponding to binary and multi-choice prompts. To improve recogni-
tion accuracy and avoid partial matches within longer phrases, we
applied regular expression boundaries (e.g., \bONE\b). Recognition
is filtered by a confidence threshold of 0.7 to reduce false positives.

To support NLCS interaction, we trained a lightweight, real-time
classifier using Google’s Teachable Machine [9]. The classifier dis-
tinguishes ambient background noise from affirmative and negative
NLCS signals. We trained the model using 120 samples of back-
ground noise and 30 samples each of affirmative and negative hum-
ming. Internally, Teachable Machine uses a transfer-learned version
of Google’s YamNet audio classification model, which employs the
MobileNet architecture [20] and operates on mel spectrogram rep-
resentations. The trained model was exported to TensorFlow.js [60]
and integrated into our WebXR-based framework for real-time
NLCS detection.

5.3.2 Head Gestures. Head-based interaction leverages the user’s
rotational head pose, estimated from WebXR’s head tracking data.
For binary queries, we detect nodding (pitch axis) and shaking
(yaw axis) based on oscillatory movement patterns. A gesture is
confirmedwhen 3–4 directional reversals are detectedwithin a fixed
temporal window, with a per-frame angular velocity threshold of
0.05 radians to filter out noise and micro-movements.

To enable multi-choice selection, we implemented a tilt-based
gesture mapping. This tracks the user’s absolute head orientation
relative to a neutral reference pose. Tilts beyond 0.3 radians to

4WebXR APIs: https://immersiveweb.dev
5three.js: https://threejs.org
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Figure 6: Applications. A-D): Sensible Agent’s initial query (I ) and repetitive query (R), based on the same daily scenarios.
A) Gym visit-I. B) Gym visit-R. C) Restaurant order-I. D) Restaurant order-R. E) Novel feature suggestion: virtual try-on. F)
Subtle cues: information retrieval. G) Effortless smart device control. H) Future application: Human-robot interaction.

the left or right are interpreted as selecting the first or second
option, respectively. A backward tilt exceeding 0.4 radians selects
the third option. This mapping provides a hands-free alternative to
UI selection, while maintaining a low motor demand footprint (e.g.,
when user is washing hands).

5.3.3 Hand Gestures. Hand input is recognized through WebXR’s
joint tracking API and analyzed using a geometry-based classi-
fier. Our implementation defines five discrete hand gestures: ONE,
TWO, THREE, THUMBS_UP, and THUMBS_DOWN. Gestures are recognized
based on the extension state of individual fingers, computed via
vector alignment and extension ratios derived from the relative
positions of joint triplets on each finger.

A finger is marked as extended if the dot product between its
segment vectors is near 1 (indicating alignment) and the overall
extension exceeds 80% of its normalized length. For example, a TWO
gesture is recognized when the index and middle fingers are both
extended, while others remain curled. Thumbs up and down are
detected via the dot product between the thumb vector and the
global up/down direction, based on the palm normal.

To prevent false positives from brief postural noise, gestures
must be held for a minimum duration of 1000ms, sampled at 30ms
intervals. Gesture state is tracked over time to ensure stable classi-
fication before confirming an input.

5.3.4 Gaze Interaction. Due to WebXR limitations, we simulated
gaze using head orientation to approximate the user’s point of
regard. UI elements are treated as collidable objects in 3D space, and
selection is inferred based on sustained gaze dwell over a selectable
target. A selection is confirmed if the user maintains gaze for at
least 3.5 seconds, minimizing accidental activation while preserving
low-effort interaction. Future researchmay leverage native OpenXR
or Unity for gaze+pinch interaction [54].

6 Applications
SensibleAgent’s core capability—dynamically adaptingwhat proac-
tive assistance to offer and how to interact—directly addresses the

critical challenge of interaction friction that often hinders the prac-
tical adoption of proactive AR agents. By intelligently selecting
the content and interaction modalities optimized for minimal user
efforts and disruption, Sensible Agent enables compelling AR
applications that were previously cumbersome or impractical:

Context-Adaptive Routine Support. Sensible Agent modi-
fies its behavior based on learned routines, context, and user profi-
ciency.

• Beginner vs. Expert Use: For a user’s very first gym visit
(Figure 6A), the system offers multi-choice for assistance,
facilitating user exploration. However, for subsequent rou-
tine workouts, particularly in a noisy environment where
voice input is difficult, it could adapt to allow a simple gaze
gesture at an icon to start/stop a timer (Figure 6B), minimiz-
ing disruption and leveraging a modality suitable for the
context.

• Learned Preferences: During a first-time restaurant visit
(Figure 6C), the system might proactively offer dish recom-
mendations. If the user dismisses this (e.g., via a head shake)
and explicitly requests menu translation, Sensible Agent
can infer this preference. On subsequent visits to similar
venues (Figure 6D), it can prioritize offering translation as-
sistance proactively, adapting the content of its assistance
based on interaction history.

Opportunistic Suggestion. Beyond adapting existing interac-
tions, Sensible Agent can opportunistically introduce users to rele-
vant but unexplored system capabilities. For example, during clothes
shopping (Figure 6E), a user might primarily use the AR agent for
price checks or list management. Sensible Agent can monitor user
activity and, during moments inferred as lower-urgency browse,
proactively suggest a related but unused feature, such as virtual
try-on. This facilitates feature discovery at moments when the user
is likely receptive, without interrupting focused tasks.

Minimally Intrusive Augmentation. Sensible Agent frame-
work preserves social flow by minimizing interference with the
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Figure 7: Experiment flow across six high-level activities. The top row shows screenshots from the three 360° video scenarios
(reading a menu, commute, grocery shopping), and the bottom row depicts physically staged AR scenes (visiting museum,
working out, cooking). Each scenario is labeled with its high-level activity and context variant (e.g., unfamiliar, social setting).
Participants experienced all unfamiliar scenarios first, followed by their corresponding context variants, avoiding back-to-
back repetition of the same activity to simulate naturalistic task switching. For each scenario, we include an example from the
baseline condition (user-issued voice query) and a Sensible Agent response, showing the system-selected query type (icon,
binary, or multi-choice), presentation modality (audio, visual, or audio+visual), a condensed version of the system-generated
prompt, and the available input modalities based on context.

real-world procedures that they augment. In a museum setting (Fig-
ure 6F), users might be engaged in conversation with companions.
Sensible Agent can provide access to supplementary information
(e.g., details about a painting via a subtle search icon) in a manner
that requires minimal overt interaction, allowing users to access
digital information without significantly disrupting the primary
social activity.

Potential Extensions: Cross-Device Orchestration. As sens-
ing capabilities improve and AR hardware becomesmore integrated,
we envision Sensible Agent acting as an orchestration engine. Fu-
ture work could explore how the framework could dynamically
select the most appropriate device and modality for a given task
– potentially leveraging nearby surfaces as displays, integrating
data from smart home sensors (Figure 6G), or coordinating actions
with physical robotic agents (Figure 6H) – based on inferred user
needs and context, further reducing interaction friction in complex,
multi-device environments.

7 Preliminary Evaluation
We conducted a within-subjects preliminary evaluation to compare
Sensible Agent against a baseline voice-controlled agent, modeled
after existing systems like Project Astra [17]. This study aimed to
surface insights into interaction efficiency, cognitive effort, and
user preference across contextually varied scenarios.

We examined whether Sensible Agent would (1) reduce users’
perceived cognitive load compared to explicit voice-based querying,
(2) result in slower overall interaction time due to its two-step
confirmation mechanism, and (3) be preferred in repetitive, context-
varying situations where users experience situational impairments
or fluctuating input/output availability. We also explored whether
participants would default to familiar input modalities or adapt
their interaction strategies based on context.

7.1 Participants
We recruited 10 participants (6 male, 4 female), aged 24–36 (𝜇 =
30.6), from within our organization via internal mailing lists. All
had prior experience using AR headsets (𝜇 = 3.8) and moderate
familiarity with voice-based assistants (𝜇 = 3.6) on a 5-point Likert
scale.

7.2 Apparatus and Experiment Design
The study was implemented on Project Moohan, an Android XR
headset6 using a WebXR-based prototype on Chrome v137. Par-
ticipants experienced both AR (with video see-through) and VR
environments and interacted with AI agent using gaze, voice, hand,
and head gestures. A custom WebSocket-based control interface al-
lowed the experimenter to manage the experimental flow remotely,

6Android XR: https://www.android.com/xr
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including switching between AR and 360° video environments with-
out requiring headset removal.

The experimental design overview is illustrated in Figure 7. Par-
ticipants completed twelve scenarios across two system conditions:
(1) Sensible Agent, which provided proactive assistance with un-
obtrusive, multimodal interactions; and (2) a baseline system that
required users to initiate requests via voice commands, following
a conventional assistant model (e.g., “What should I order?”, “Tell
me about this exhibit.” ). The system was Wizard-of-Oz controlled;
participants tapped the headset to signal readiness, after which the
experimenter triggered the appropriate system behavior (speech
detection for baseline, environment detection for Sensible Agent).

Scenarios were divided into six high-level activities: three deliv-
ered as 360° videos (e.g., reading a menu at a restaurant, shopping at
a grocery store, commuting in bus), and three physically staged AR
scenes (e.g., cooking at a kitchen, working out at a gym, visiting the
museum). Each activity was experienced in two forms: a baseline
unfamiliar version and a context variant that modulated key context
components that were explored in the workshop study and the data
collection study, including social engagement, temporal urgency,
or sensory constraints. For instance, a “reading a menu at a restau-
rant” scenario may be experienced first alone and then in a busy
group setting. This paired design is to examine how interaction
preferences shift when the same high-level activity occurs under
altered contextual pressures.

The overall scenario flow was intentionally structured to avoid
back-to-back repetitions of the same activity. As shown in Figure 7,
participants first experienced three unfamiliar scenarios across
different activities. After a short break, they encountered the corre-
sponding three variant scenarios. This design aimed to minimize
repetition effects and maintain participant engagement across tasks,
while enabling direct within-subject comparison of behavior across
unfamiliar and variant contexts.

7.3 Procedure
Each study session lasted approximately 45 minutes. Following a
short tutorial on the interaction modalities supported in the system
(e.g., head gestures, hand gestures, gaze, or NLCS), participants
completed six scenarios in total; three unfamiliar baseline versions
followed by their paired context variants, each drawn from a dif-
ferent high-level activity (e.g., cooking, commuting). To minimize
learning or carryover effects, participants never encountered both
versions of the same activity back-to-back. The scenario order was
consistent across participants and is shown in Figure 7.

At the beginning of each trial, participants were briefly narrated
the contextual framing of the scenario, including relevant condi-
tions such as task familiarity, social engagement, or time pressure.
During each scenario (lasting 2–3 minutes), participants responded
to agent prompts using the available input modalities. In Sensible
Agent conditions, the system adaptively enabled modalities based
on context, and participants were free to respond using any that
were available. Participants interacted with the agent until a system
response was completed.

System conditions were counterbalanced across participants
using a Latin square. After each system condition, participants com-
pleted the NASA-TLX [18] and System Usability Scale (SUS) [6]

questionnaires. We also logged interaction time (from prompt trig-
ger to system response) and recorded the modality used for each
response.

At the end of the entire session, participants in a brief semi-
structured interview. We asked about overall system preferences,
perceived effort, comfort with interaction modalities, and expecta-
tions for proactive agent behavior in everyday contexts.

7.4 Results
We report both parametric (paired-sample t-test) and non-parametric
(Wilcoxon signed-rank test) results, based on Shapiro-Wilk nor-
mality checks. All quantitative analyses are exploratory and not
corrected for multiple comparisons. Effect sizes (Cohen’s 𝑑 or rank-
biserial 𝑟 ) are included for transparency (See Figure 8).

Interaction Time. Interaction was faster in the baseline voice-
query condition (𝜇 = 16.43s, 𝜎 = 0.84) than in the Sensible Agent
condition (𝜇 = 28.54s, 𝜎 = 4.85), 𝑡 (9) = −7.54, 𝑝 < .001, 𝑑 = −2.51.
This trend is expected due to Sensible Agent’s two-step interaction
flow, where the system first presents a suggested query based on
context and the user then confirms or modifies it, in contrast to the
baseline system where users immediately issue a voice command.

Cognitive Load (NASA-TLX). Sensible Agent showed lower
mental demand (𝜇 = 21.10, 𝜎 = 11.57) than the baseline (𝜇 = 65.00, 𝜎
= 20.19), 𝑡 (9) = 6.40, 𝑝 < .001, 𝑑 = 2.03. Participants also reported
lower temporal demand with Sensible Agent (𝜇 = 16.00, 𝜎 = 10.12)
versus baseline (𝜇 = 46.20, 𝜎 = 16.61), 𝑡 (9) = 5.43, 𝑝 < .001, 𝑑 = 1.72.

Effort scores showed a similar trend: 𝑊 = 1.00, 𝑝 = .0039
(Wilcoxon), with Sensible Agent rated lower (𝜇 = 20.30, 𝜎 = 12.79)
than baseline (𝜇 = 67.20, 𝜎 = 14.70). Participants frequently men-
tioned the ease of interaction as a key factor. Consistent differences
were observed for physical demand (𝑝 = .18), performance satisfac-
tion (𝑝 = .65), or frustration (𝑝 = .23).

Total Raw-TLX scores were lower for Sensible Agent (𝜇 = 20.55,
𝜎 = 8.42) than baseline (𝜇 = 43.27, 𝜎 = 9.73), 𝑡 (9) = 6.76, 𝑝 < .001,
𝑑 = 2.14, reflecting a consistent pattern of reduced cognitive burden
across conditions.

Usability (SUS). SUS scores were calculated using the standard
procedure (

∑
item scores × 2.5, yielding a range of [0, 100]). There

was no observed difference in SUS scores between the baseline
(𝜇 = 76.67, 𝜎 = 5.93) and Sensible Agent (𝜇 = 81.33, 𝜎 = 6.58),
𝑊 = 11.00, 𝑝 = .11. Both conditions averaged above 71.4, which
maps to a “Good” usability rating [4]. Detailed subscale scores are
provided in Appendix C.

User Preferences. Participants expressed a preference for Sen-
sible Agent (𝜇 = 6.00, 𝜎 = 0.94) over the baseline (𝜇 = 3.80, 𝜎 =
1.48),𝑊 = 0.00, 𝑝 = .0074. Seven of ten participants expressed that
the proactive and unobtrusive nature of Sensible Agent made
interaction more engaging.

Interaction Patterns. We observed notable patterns in how par-
ticipants interacted with the multi-choice panel across different
context scenarios. In the initial round of unfamiliar scenarios, those
presented first in both the 360° andAR settings, participants selected
different input modalities when prompted to confirm agent sugges-
tions: 3 participants used voice, 2 used head gestures, and 4 used
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Figure 8: Quantitative analysis of (a) interaction time, (b) Raw TLX scores, (c) SUS scores, and (c) preference measures in our
user study. The statistic significance is annotated with ∗, ∗∗, or ∗∗∗ (representing 𝑝 < .05, 𝑝 < .01, and 𝑝 < .001, respectively).

hand input. Six out of ten participants consistently used the same
modality throughout this round, suggesting an early anchoring
effect in input behavior. The remaining four participants changed
modalities during the round, often out of exploratory intent.

Situational factors influencedmodality choice. In scenarioswhere
participants were physically holding objects—such as the gym (hold-
ing a dumbbell) or cooking (manipulating ingredients)—six partici-
pants switched to hands-free modalities like head or voice input,
indicating sensitivity to situational input constraints (SSID). Two
participants preferred head gestures, citing familiarity with similar
gestures on consumer devices like Apple’s AirPods. However, they
noted that the tilting gesture required some adaptation. Gaze-based
input was met with mixed responses; five participants reported that
gaze sometimes conflicted with reading the panel content, leading
them to look away intentionally to avoid accidental selections.

7.5 Qualitative Feedback
We summarize key takeaways from post-trial interviews, focusing
on user perceptions of input, prompt format, and interactional
fluency.

Preference for unobtrusive input. Five participants (P1, P2,
P5, P8, P9) appreciated being able to respond using minimal-effort
inputs such as head gestures or short verbal confirmations. P2 noted,
“I liked how I could reply in almost any way I wanted—nodding, saying
‘yes’, or just tilting my head.” P9, “It works well because the agent
asked me something I didn’t even have to think to ask. It was natural
to just nod and keep going.” P1 highlighted the benefit of quick
interactions: “I could answer fast and move on. That’s what makes
it feel helpful instead of annoying.” P8 added, “I loved how little
effort I had to give to communicate, which makes even more sense
in situations where I have a friend who is seemingly talking to me.”
Three participants (P3, P6, P10) expressed a desire for lightweight
confirmation that their input had been successfully recognized.

Prompt format preferences. All ten participants found multi-
choice prompts especially helpful in unfamiliar situations. P4 stated,
“The choices were helpful when I didn’t know what I want. I could
just pick.” Opinions on icon-only formats were mixed; while some
appreciated their brevity, P7 mentioned interpretability challenges:
“It took me three seconds to figure out what the icon meant.”

Alignment with social interaction patterns. Several partici-
pants (P3, P8, P10) described the interaction style as resembling a
casual conversation, where suggestions were context-aware and

effort-free. As P10 put it, “It felt like just talking to someone who
already knows what I might want.”

8 Discussion
Our study reveals that proactive agents, when equipped with unob-
trusive multimodal interfaces, not only reduce user effort but also
reshape how users perceive and engage with digital assistants. We
reflect on these broader implications and discuss how our frame-
work can evolve based on observed behaviors from both studies.

8.1 Proactivity as a Social Cue
While prior work on proactive agents has focused on reducing
friction or predicting user needs, our findings suggest that proac-
tivity may also shape how users perceive the agent as a social
presence. Seven out of ten participants reported that they found
interactions with Sensible Agent to be more engaging or even
enjoyable beyond simply requiring less effort.

The use of subtle, non-verbal input methods, such as nodding or
tilting the head, further contributed to this perceived naturalness.
Participants likened these gestures to the kinds of acknowledgments
they use in everyday social interactions. These results point to
a broader design opportunity: proactively adaptive systems may
benefit from aligning more closely with human social cues, not only
to reduce effort, but to foster rapport and interactional fluency.

8.2 Modality Fusion Based on Situational
Weighting

While our current framework allows users to respond using multi-
ple modalities, input signals are handled independently and without
coordination. During our workshop study, two expert participants
proposed that the system could go further by integrating multi-
ple modalities using situational weighting. For instance, in real-
world environments, usersmay emit overlapping or even conflicting
cues—such as unintentionally nodding while verbally responding
“no”, or glancing away while affirming an option aloud. Such ambi-
guities are difficult to resolve without considering environmental
context, task state, and historical user behavior.

This insight suggests an extension to our framework where each
inputmodality is evaluated not only by its raw signal, but by its relia-
bility under the current situational context. For example, voice input
may be down-weighted in noisy environments, while hand gestures
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may be deprioritized when the user is physically constrained. This
would allow the agent to compute a weighted confidence score
across inputs, resulting in more robust intent inference. Building
in such a multimodal arbitration layer—responsive to situational
impairments and social context—would position proactive agents
to operate more effectively in complex, dynamic environments.

In safety-critical or task-oriented contexts such as equipment
repair or medical triage, such multimodal arbitration becomes es-
sential—for both robustness and to modulate intrusiveness and
timing. Our modular architecture could incorporate a task monitor
that tracks procedural stages and interruptibility signals (e.g., idle
hands, pause in activity), enabling the agent to shift from ambient
assistance to structured, stepwise support. This would allow proac-
tive prompting to align not just with user availability, but with task
flow.

8.3 Modeling Modality Preferences
While Sensible Agent currently treats each proactive interaction
as a discrete event, several participants attempted to engage in
follow-up utterances or gestures, suggesting a desire for extended,
multi-turn exchanges. This highlights an opportunity to extend our
framework by incorporating a temporal layer that tracks dialogue
state and user responsiveness across turns.

One open design question is how agents should adapt presen-
tation strategies during sustained interactions. Should the same
modality persist across turns to support continuity and reduce
surprise, or should the system adjust dynamically to maintain en-
gagement or match user behavior? Extending our framework to
include a temporal rhythm model could enable systems to better
scaffold ongoing interactions—particularly in context-rich environ-
ments where attention and modality availability fluctuate.

In addition to managing temporal rhythm, agents must also ac-
count for longer-term user preferences that may not align with
situationally optimal choices. For instance, a user might consis-
tently prefer hand gestures over voice even in quiet environments.
Our framework’s notion of a user action prior (Figure 2 already
supports situational preference modeling; future extensions could
incorporate longer-term adaptation through techniques like re-
inforcement learning or implicit feedback tracking. This would
enable the system to personalize modality strategies based not just
on immediate context, but on evolving user tendencies and habits.

9 Limitations
Our current prototype and study were designed to validate core in-
teraction principles; however, several areas remain open for future
extension and evaluation. First, while our design supports person-
alization and contextual adaptation, our current prototype does
not model user history or longitudinal preferences. Incorporating
historical interaction patterns—such as preferred modalities, tim-
ing preferences, or context-specific behaviors—could enable more
personalized and anticipatory agent behavior over time.

Second, we did not model the precise timing of proactive prompts
within a given situation. Prior work in procedural task guidance
has explored step-aware interventions where action boundaries
are clearly defined [3, 33]. However, our target contexts involved
open-ended activities (e.g., browsing a museum, ordering food)

where task state is fluid and interruption thresholds are less well-
defined. Determining the optimal timing for intervention in such
scenarios remains an open challenge and a promising extension to
our framework.

Third, while our study compared to a conventional voice-query
baseline, we did not include a condition where assistance was de-
livered through always-visible multi-choice interfaces using con-
ventional XR interactions (e.g., point + pinch) or microgestures
(e.g., gaze + thumb-to-finger swipe [53]). Comparing against such
persistent UI paradigms could help isolate the specific contribution
of unobtrusive, gaze- or head-based modalities to user experience
and perceptions of agent presence. Additionally, our sample size
was limited (n=10), and the findings should be interpreted as pre-
liminary and exploratory. While we observed consistent trends,
future work should expand to assess generalizability and long-term
effectiveness.

Finally, the scenarios used in our study focused on everyday,
repeated contexts—such as grocery shopping or exercising—but
did not include task-oriented settings with well-defined goals or
high-stakes outcomes. Future work could explore how proactive,
multimodal agents function in domains such as collaborative work,
navigation, or healthcare, where expectations and risks differ.

10 Conclusion and Future Work
In this paper, we address the critical challenge of interaction fric-
tion hindering the adoption of proactive AR agents. Existing ap-
proaches often rely on explicit, burdensome interactions unsuit-
able for many real-world contexts. Our work introduced Sensible
Agent, a framework demonstrating the feasibility and benefit of dy-
namically adapting both the content (“what”) and modality (“how”)
of proactive assistance to achieve unobtrusive interaction. By lever-
aging multimodal sensing and LMM reasoning, Sensible Agent
selects contextually appropriate actions and interaction methods
designed to minimize user effort. Our evaluation confirmed that this
dynamic adaptation significantly reduces perceived intrusiveness
and interaction burden compared to conventional methods, paving
the way for more seamless human-AI collaboration in AR.

While Sensible Agent represents a significant step towards ef-
fortless proactive AR, several avenues warrant further exploration.
Future work should focus on expanding the repertoire of unob-
trusive interaction modalities beyond the current set (e.g., subtle
haptics, ambient visualizations) and exploring adaptation within
modalities (e.g., varying the level of detail). Developing rigorous
benchmarks and standardized metrics to evaluate the effectiveness
and unobtrusiveness of proactive AR agents remains a key chal-
lenge for the community. Furthermore, extending the framework to
provide more personalized, long-term recommendations based on
inferred user goals and preferences presents an exciting direction.
Finally, integrating Sensible Agent’s principles into broader ambi-
ent computing [50] and mirrored world [15] environments could
unlock truly pervasive, yet respectful, proactive assistance.
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A List of Action Categories and Sub-Context
Categories and Distribution

We categorized the reason behind each proactive action using eight
context subcategories grounded in prior HCI work on situational
impairments and cognitive load. These include:

Base: No specific contextual impairment ormodulation indicated
in the user’s request.

Temporal Urgency: Situations where the user is in a rush or
expresses urgency, often asking for quick or efficient assistance.

Familiarity-Based: Requests that refer to past behavior or his-
tory (e.g., “order my usual” or “what I had last time”).

Unfamiliarity-Based: Requests expressing uncertainty or un-
familiarity with the environment or task.

Cognitive Load: Situations where the user expresses being over-
whelmed, multitasking, or having difficulty focusing.

Sensory Disruption: Scenarios with environmental challenges
such as low visibility, noise, or other sensory barriers.

Social Coordination: Requests involving awareness or coordi-
nation with other people (e.g., group decisions, tracking friends).

Environment Shift: Contexts involving location or environ-
mental changes (e.g., outdoor settings, unfamiliar spaces like mu-
seums or campsites) where standard interfaces may no longer be
optimal.

Stay Passive: Cases where users explicitly indicated that they
did not want any proactive support.

Each proactive action was annotated with both its functional
category and the contextual reason inferred from the user’s wording
and scenario.

A.1 Context Variant, Query Type, Activity
Distribution

Figure 9 illustrates the distribution of presentation modality prefer-
ences across different activity contexts and query types. (a) shows
how users’ preferences for visual, vocal, or combined modalities
vary by activity type, while (b) presents the modality preferences in
relation to different query formats (binary, icon, multiple choice).

Figure 10 shows the distribution of response counts across con-
textual variants and query types.

A.2 Usefulness Rating
As shown in Figure 11, the perceived usefulness of query responses
varies by both activity context and query format.

B System Latency and Prompting Efficiency
To assess the responsiveness of our system, we measured the agent-
side latency of the Sensible Agent pipeline—from the moment a new
context is constructed to the moment a complete proactive prompt
(including reasoning, action type, query format, and presentation
modality) is returned from the language model. This evaluation
focuses specifically on generation time and does not include user
response latency or downstream input handling.

We conducted 20 trials using diverse test contexts spanning
multiple high-level activities (e.g., grocery shopping, museum visit,
working out) and context variants (e.g., time pressure, social setting,

Table 2: Counts of entries classified under each action-
context pair.

Action Category Context Subcategory Count

Augment Base 17
Augment Cognitive Load 1
Augment Sensory Disruption 5
Augment Setting Shift 4
Augment Social Coordination 2
Augment Time-Sensitive 3
Augment Unfamiliarity-Based 1
Automate Base 28
Automate Cognitive Load 6
Automate Sensory Disruption 1
Automate Setting Shift 6
Automate Social Coordination 1
Automate Time-Sensitive 7
Automate Unfamiliarity-Based 1
Guide Base 16
Guide Cognitive Load 1
Guide Setting Shift 10
Recall Base 13
Recall Familiarity-Based 2
Recall Sensory Disruption 1
Recall Setting Shift 13
Recall Time-Sensitive 15
Recall Unfamiliarity-Based 2
Remind Base 66
Remind Cognitive Load 15
Remind Familiarity-Based 1
Remind Sensory Disruption 7
Remind Setting Shift 12
Remind Time-Sensitive 72
Stay Passive Cognitive Load 2
Stay Passive Sensory Disruption 1
Stay Passive Setting Shift 3
Stay Passive Stay Passive 16
Stay Passive Unfamiliarity-Based 1
Suggest Base 239
Suggest Cognitive Load 34
Suggest Familiarity-Based 5
Suggest Sensory Disruption 22
Suggest Setting Shift 75
Suggest Social Coordination 24
Suggest Time-Sensitive 44
Suggest Unfamiliarity-Based 11
Summarize Base 16
Summarize Cognitive Load 4
Summarize Setting Shift 2
Summarize Time-Sensitive 1
Take App Action Base 70
Take App Action Cognitive Load 8
Take App Action Familiarity-Based 1
Take App Action Sensory Disruption 1
Take App Action Setting Shift 23
Take App Action Social Coordination 2
Take App Action Time-Sensitive 11
Take App Action Unfamiliarity-Based 320
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(a) Presentation Modality × Activity (b) Presentation Modality × Query Format

Figure 9: Quantitative analysis of the distribution of selected presentation modalities across (1) high-level activity types and
(2) query formats.

Figure 10: Distribution of response counts across differ-
ent contextual variants (rows) and query types (columns).
Higher counts are observed for binary and multiple-choice
formats in variants such as diff, social, and temp, with so-
cial–icon combinations peaking at 69 entries.

sensory impairment). Each trial used a prompt containing 6 few-
shot exemplars selected based on contextual similarity heuristics,
such as shared engagement type or environmental condition. The
prompts were structured in a triplet format (context, reasoning,
agent suggestion), and processed through GPT-4o via API.

Figure 11: Heatmap showing the mean usefulness ratings of
query responses across combinations of activity type (hori-
zontal axis) and query format (vertical axis). Darker shades
represent higher perceived usefulness, with binary queries
during menu and museum activities receiving the highest
ratings.

Average generation latency was 6.2 seconds (𝜎 = 0.8) on a
MacBook Pro (M2 Pro, 16GBRAM)with a stable internet connection.
We observed minor variation based on the number and length of
examples, but no critical delays for short-to-medium interactions
(2–3 minutes) as used in our scenarios.

Compared to prior systems that employed structured LLM-based
reasoning, our design reflects a trade-off between expressivity and
responsiveness.Human I/O reported an average latency of 19.95 sec-
onds using GPT-4 and 7.33 seconds with GPT-3.5, using full Chain-
of-Thought prompts focused on SIID detection [41]. OmniActions
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did not report exact latency, but leveraged fixed-size prompts for
classification over a closed action label set [34]. In contrast, our goal
was to support open-context prompting with lightweight, inter-
pretable few-shot examples while remaining within an acceptable
delay for proactive interaction in everyday mobile settings.

Although our prompt set covers only a subset of the context-
action space observed during data collection, we found that GPT-4o
generalized well when exemplars shared key behavioral constraints.
Future work may explore integrating retrieval-augmented genera-
tion or compact local models to further scale coverage while main-
taining or improving latency.

C SUS Subscale Scores
We further examined each subscale component of the SUS ques-
tionnaire to investigate whether participants perceived differences
between the two systems on specific usability aspects. While no

subscale reached statistical significance after correction, we report
descriptive comparisons to contextualize user preferences. For ex-
ample, for the item “I think that I would like to use this system
frequently”, ratings were slightly higher for the Sensible Agent con-
dition (𝜇 = 6.3, 𝜎 = 0.67) compared to Baseline (𝜇 = 4.1, 𝜎 = 1.2),
𝑊 = 10.0, 𝑝 = .09. Similarly, for the item “I found the system very
cumbersome to use”, Sensible Agent received higher ratings (𝜇 = 5.3,
𝜎 = 0.48) than Baseline (𝜇 = 2.2, 𝜎 = 1.0),𝑊 = 12.0, 𝑝 = .15,
suggesting a possible reduction in perceived complexity (Note that
negatively worded items were reverse-scored prior to analysis.). No
other items showed notable differences (all 𝑝 > .2), including “I felt
very confident using the system” and “I would imagine that most peo-
ple would learn to use this system very quickly”, which were rated
similarly across conditions. These results align with the overall
SUS scores, where no statistically significant difference was found
between conditions (𝜇 = 76.67, 𝜎 = 5.93 for Baseline; 𝜇 = 81.33,
𝜎 = 6.58 for Sensible Agent;𝑊 = 11.00, 𝑝 = .11).
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