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Figure 1: XR-Objects allows users to (a) select and interact with real-world objects in AR as if they were digital objects.

Automatically generated object-based AR context menus allow objects to (b) provide information about themselves, such as

nutritional facts and ingredients. For example, a user (c, d, e) asks a question about the cooking time of pasta, and then (f, g)

uses the answer to set a spatial timer widget anchored to the relevant pot in 3D space.

ABSTRACT

Seamless integration of physical objects as interactive digital enti-
ties remains a challenge for spatial computing. This paper explores
Augmented Object Intelligence (AOI) in the context of XR, an in-
teraction paradigm that aims to blur the lines between digital and
physical by equipping real-world objects with the ability to interact
as if they were digital, where every object has the potential to serve
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as a portal to digital functionalities. Our approach utilizes real-time
object segmentation and classification, combined with the power
of Multimodal Large Language Models (MLLMs), to facilitate these
interactions without the need for object pre-registration. We imple-
ment the AOI concept in the form of XR-Objects, an open-source
prototype system that provides a platform for users to engage with
their physical environment in contextually relevant ways using
object-based context menus. This system enables analog objects to
not only convey information but also to initiate digital actions, such
as querying for details or executing tasks. Our contributions are
threefold: (1) we define the AOI concept and detail its advantages
over traditional AI assistants, (2) detail the XR-Objects system’s
open-source design and implementation, and (3) show its versatility
through various use cases and a user study.
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1 INTRODUCTION

Modern Extended Reality (XR) platforms come with a plethora
of sensors, cameras, and advanced computer vision techniques to
seamlessly blend virtual content with the physical world through
color passthrough and scene understanding. However, despite these
technological steps, the integration of real objects into the XR envi-
ronment remains somewhat superficial, treating the physical world
largely as a mere backdrop rather than an interactive component.
In contrast, projects like RealityCheck [36] or Remixed Reality [57]
show a future where digital and physical worlds could be closely
intertwined together. Similarly, advancements in artificial intelli-
gence (AI) are laying the groundwork for such a future, with break-
throughs in real-time unsupervised segmentation [73] combined
with in-painting [80] or generative AI content generation [46].

The wide availability of machine learning (ML) and computer
vision technologies has also led to features that enhance digital
interaction with the physical world at our fingertips. Tools like
image-based search in Google Lens

1 and utility-focused Augmented
Reality (AR) features in smartphones, such as text copy & paste and
real-time translation, are becoming increasingly common. Together,
these tools represent building blocks that could bring us closer to a
future in which a total understanding of the world and its objects
can be applied to our everyday interactions in XR.

In this paper, we explore an interaction paradigm we term Aug-

mented Object Intelligence (AOI) in XR, which allows any analog
object identified by the XR system to reveal digital data asso-
ciated with it. This enables users to perform context-appropriate
digital actions with respect to the object in a meaningful way. Our
system XR-Objects embodies this idea and aims to demonstrate
and investigate “semantic equality" between real and virtual objects
without the need for pre-registration.

Imagine a scenario as familiar as right-clicking a digital file to
open its context menu, but applied to physical objects within
XR — such as right-clicking on potatoes or pasta in a pot to start a
cooking timer set to the correct duration, or filtering for gluten-free
products on a grocery shelf through an XR interface (Figure 1).

The leap towards physical awareness in XR-Objects represents
an advancement over traditional AR, which often relies on manual
input or the use of physical tracking markers. We uniquely combine
1Google Lens: https://lens.google

developments in spatial understanding via technologies such as
Simultaneous Localization and Mapping (SLAM), available in AR-

Core [33] and ARKit [42], and machine learning models for object
segmentation and classification (COCO [54] via MediaPipe [59]).
These technologies enable us to implement object instance-based
AR interactions with semantic depth and achieve live detection
and 3D localization without pre-registration. We also integrate
a Multimodal Large Language Model (MLLM) into our system,
which further enhances our ability to automate the recognition of
objects and their specific semantic information within XR spaces.

Our contributions are threefold:
• We introduce the concept of Augmented Object Intelligence

(AOI) for XR, a paradigm shift towards seamless integration
of real and virtual content in XR using AI and object-based
context menu interfaces.

• We detail the open-sourced2 design and implementation of
XR-Objects, our prototypical system that exemplifies AOI,
alongside an exploration of diverse use cases to demonstrate
its potential.

• We provide a comparative evaluation between standard prompt-
based LLM interfaces and our AOI approach for contextual
information retrieval and object-centric interaction in AR, high-
lighting AOI’s significant reduction in task completion time
and its enhanced ease of use and satisfaction.
We demonstrate our prototype that integrates these AR and AI

components in a seamless way, which is implemented for smart-
phones to provide access to a broad audience, as commercial XR
headsets with large field of view (e.g., Meta Quest 3) do not yet
give programmatic access to the user’s camera stream. By open-

sourcing our system, we aim to foster further innovation in the
field, ultimately bringing us closer to a future where the physical
and digital realms interact seamlessly.

2 RELATEDWORK

This section provides an overview of previous work in user interface
(UI) design principles, blended reality interactions, and advance-
ments in AR technology [68]. These areas form the foundation upon
which our research builds, which aims to enhance the interaction
between users and the physical world through XR-Objects.

2.1 Fundamentals of UI

The challenge of bridging the cognitive gap between human users
and computational systems has been a central theme in HCI. Tra-
ditional approaches have employed various layers of representa-
tions to mediate this interaction, manifesting most recognizably
in the UIs of devices ranging from PCs and smartphones to IoT
devices and automotive systems [74]. Despite these advancements,
the resurgence of command-line interface (CLIs) in contemporary
AI interactions, as seen in the usage of prompts with large lan-
guage models (LLMs) [70], suggests a potential oversimplification
of user interaction paradigms. This regression shows the necessity
of reevaluating our approach to UI design in the age of AI and spa-
tial computing [71], where the intricacy of human intentions and
the computational interpretation thereof demand a more nuanced

2XR-Objects open-source project: https://github.com/google/xr-objects
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                Which one of these products contain lactose?

                Can you mark those on the image directly? I don’t speak Japanese.

Figure 2: Example of an interaction with a conventional multimodal AI assistant. While the model clearly has the capacity to

produce reasonable scene understanding when an image and a prompt is provided as input, it fails in providing an anchored

output that ties back to the original multimodal prompt.

form of representation. Figure 2 demonstrates that the multimodal
AI assistant clearly has the capacity to produce reasonable scene
understanding when an image and a prompt is provided as input,
but it fails in providing a robustly anchored output or interaction
capabilities that tie back to the original multimodal prompt.

Significantly, the role of UIs extends beyond mere facilitation of
interaction, which shapes the user’s ability to navigate, understand,
and command the computational system. Effective UIs support
essential cognitive functions such as memory, discovery, and artic-
ulation [6], thus becoming a key factor in the widespread adoption
and utility of AI and spatial computing technologies.

In addressing these challenges, our work revisits the utility
of context menus — a familiar paradigm in desktop computing
[2, 4, 86] — and explores their potential in fostering familiar inter-
actions with physical objects within XR environments. Previous
demonstrations [51] showed the potential of such ubiquitous con-
text menus through simulated digital notes via projection. In this
work, we show a fully functional prototype using AR.

2.2 Extended Reality

XR systems represent a rapidly developing field within HCI, with re-
cent works aiming to make the boundaries between real and virtual
environments indistinguishable [20, 36, 56]. While a comprehen-
sive literature review [3] is beyond the scope of this section, we
highlight key themes from the broader XR literature that inspired
our research.

Interacting with Real-World Affordances: As XR platforms become
increasingly accessible, enhancing physical-aware interactions can
significantly elevate user experiences. DepthLab [28] exemplifies
advancements in real-time 3D interactions with the real world using
depth maps. InteractionAdapt [13] optimizes VR work-spaces for
efficient interaction across diverse physical environments.

Manipulating Perception in XR: Gonzalez-Franco and Lanier [32]
explored how perceptual manipulations can be effectively mod-
eled within VR environments to enrich user experience. Bonnail
et al. explore how XR can leverage human memory limitations to

influence user perception and behavior [7]. Concurrently, causality-
preserving asynchronous reality enables users to interact with events
in a causally accurate manner despite temporal delays [29]. Tseng
et al. highlighted the risks associated with such manipulations [76]
and proposed mitigations against their malicious use [75].

Balancing Immersion and External Awareness: Critical to XR sys-
tems is managing the balance between immersion in the virtual
world and awareness of the real world. Studies such as those by
Kudo et al. emphasize the importance of smoothly transitioning
users and devices between realities, while also maintaining by-
stander awareness [48]. Further guidelines on this balance are dis-
cussed in works by Gonzalez-Franco et al. for harmonizing user
experience across dimensions [30, 31].

2.3 Interacting with Physical Objects in XR

Despite the considerable advances in AI’s capability to generate and
understand complex content, our physical world remains predomi-
nantly analog, with only a fraction of daily activities and tools being
enhanced by digital technology [21, 66, 78]. This analog nature of
human experiences, from basic needs fulfillment to complex task
execution, presents a significant challenge in integrating digital
intelligence in a manner that feels both natural and easy to grasp.

Several research efforts have explored ways to bridge this gap by
leveraging XR technologies to enable interaction with real-world
objects [83]. Figure 3 shows the landscape of physical object inter-
actions in XR classified across two dimensions: anchoring (manual
vs. seamless) and content (arbitrary vs. object-focused).

Building on the foundational work in tangible bits [43, 44], some
approaches rely on pre-registration of objects or manual setups
to achieve tangible input [9, 27, 61, 87] or tangible haptic proxy
[37, 39, 45]. In contrast to these manual processes, other works
utilized markers to more automatically execute the object detection
and AR content anchoring [19]. For instance, researchers embedded
visible [11, 38, 53, 65] or invisible markers [22–26] to documents
and 3D objects for AR purposes. However, these methods often
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Figure 3: The landscape of physical object interactions in XR

classified across two dimensions: anchoring and content.

impose limitations on the types of objects that can be interacted
with, requiring specific fabrication or preparation.

Our exploration acknowledges the complexity of translating
digital interactions to physical objects and aims to bridge this divide
by enhancing any physical object with digital functionality and
contextual interaction capabilities.

Once the objects have been identified and localized by the AR
platform, an important dimension is what content will be shown at
the identified locations [8]. Previous work has focused on optimiz-
ing the presentation of digital content (e.g., existing app windows
or widgets) on or around objects [12, 35, 55, 58], while others have
investigated the use of tangible interaction with physical objects as
a means to control such digital content [61, 72, 87]. EditAR [15] sug-
gested capturing users and their interactions with objects nearby to
create digital twins for later consumption in XR. ProcessAR [14] cap-
tures instruction demonstrations related to domain-specific objects
by experts, so they can be viewed by novices in situ.

InfoLED [84], LightAnchors [1], BLEARVIS [69], and Reality Ed-

itor [40] took this one step further to show truly object-specific

content in AR, however, this was specifically for electronic objects,
such as their showing their battery level or device status in AR.
Researchers further suggested augmenting visualizations with dy-
namic AR content [11, 16, 17, 81], however, such dynamic content
was limited to printed documents or displays.

Our work builds upon these prior efforts by proposing a system
that enables object-specific content and interactions for a much
wider range of objects, regardless of their physical capabilities
or pre-configured markers. We leverage advancements in spatial
understanding via techniques like SLAM [18], available in ARCore

and ARKit, and machine learning models for object segmentation
and classification to achieve this. This allows us to implement AR
interactions with semantic depth, enabling contextually relevant
information and actions for any object in the user’s environment.

3 XR-OBJECTS IMPLEMENTATION

XR-Objects leverages developments in spatial understanding via
tools such as SLAM, available in ARCore [33] and ARKit [42], and
machine learning models for object segmentation and classification
(COCO [54] viaMediaPipe [59]), which enables us to implement AR

interactions with semantic depth. We also integrate a Multimodal
Large Language Model (MLLM) into our system, which further
enhances our ability to automate the recognition of objects and
their specific semantic information within XR spaces.

Platform. Given the current constraints of AR headsets, partic-
ularly their limited developer access to real-time camera streams,
we consciously targeted smartphones for our mobile prototype
development. We aim to enable anyone to try out our open-source
project on their phone. Modern smartphones use similar types of
ARM-based mobile chipsets as AR headsets, yielding comparable
performance for real-time computer vision tasks, while providing
unrestricted access to their high-resolution cameras. This enables
our application to identify objects in the user’s environment and
overlay digital information directly onto the physical world through
the phone’s display thanks to ARCore and ARKit.

Multimodal Interaction. At the heart of XR-Objects is a mul-
timodal large language model (MLLM) [85] as well as a speech
recognizer, which facilitate a rich interaction layer between the
user and the objects. This model not only recognizes objects but also
fetches and provides contextual information and actions relevant
to the selected object. By integrating voice and visual inputs, our
system offers a seamless and familiar interface for users to engage
with their surroundings in novel ways.

3.1 Design Considerations

In developing the AOI paradigm for XR environments, we con-
sidered a range of design choices to enhance user interaction and
system performance. These considerations are grounded in our re-
view of related work and guided by our goal to seamlessly integrate
digital functionalities with physical objects. Here, we explain our
rationale behind key design decisions, contrasting them with alter-
native approaches and situating them within the broader discourse
of HCI and AR.

3.1.1 Object-Centric vs. App-Centric Interaction. Traditional AR
interactions often follow an app-centric model, where users must
first open a specific application to access digital functionalities. In
this model, users have to navigate through the app’s interface to
select categories or objects of interest, and in some cases, even
upload pictures for analysis. Examples of app-centric interactions
include standard ChatGPT -style interfaces, where users input a
query and an image, and Google Lens, which requires users to open
the app and manually select the objects they wish to interact with.

In contrast, our system prioritizes an object-centric approach,
where interactions are directly anchored to objects within the user’s
environment. This means that users can immediately access digital
functionalities by selecting an object, without the need to navigate
through an app or input additional information. By leveraging
advanced computer vision and spatial understanding techniques,
our AOI framework enables users to seamlessly engage with the
physical world as if it were a digital interface. We also note that,
currently, while our research prototype does need to be installed
as an application package, it aims for eventual native integration,
similar to how QR scanning is now embedded in smartphones.
On XR headsets, AOI could be enabled as an additional layer of
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Figure 4: The XR-Objects processing pipeline combines MediaPipe and ARCore for object detection and spatial tracking,

respectively, integrates an MLLM for object-specific metadata retrieval and interaction, and renders UI content in 3D space.

the home space, in a similar manner as video passthrough can be
toggled on and off.

An object-centric approach would offer several advantages over
app-centric models. Firstly, it provides a more natural interaction
flow, as users can directly engage with objects in their surroundings
without the cognitive burden of switching between the physical
world and a digital app. Secondly, it minimizes the operational
steps required to access digital functionalities, streamlining the user
experience, enabling multi-tasking, and reducing friction. Finally,
by anchoring interactions directly to objects, our AOI framework
may offer a more immersive and seamless XR experience.

3.1.2 World-Space UI vs. Screen-Space UI. The choice between im-
plementing a world-space UI versus a screen-space UI was informed
by our aim tomaintain spatial consistency and enhance user engage-
ment with the XR environment. A screen-space UI, fixed relative
to the user’s viewpoint, could potentially obfuscate the immersive
experience by detaching digital interactions from their physical
context. Conversely, our adoption of a world-space UI, where digi-
tal elements are anchored to physical objects (akin to "billboards"
in 3D graphics, i.e., user-facing 2D planes in a 3D space), ensures
that interactions remain contextually grounded within the user’s
real-world environment. We hope to minimize cognitive load by
preserving spatial orientation and also leverage the natural human
capability to navigate and interact with 3D spaces.

3.1.3 Signaling Identified XR-Objects. To mitigate visual clutter, a
common issue in densely populated AR environments, we introduce
the use of semi-transparent spheres, or "bubbles," as minimalist
indicators of interactable objects. This design choice is based on the
principle of minimalism and unobtrusiveness, ensuring that users
are not overwhelmed by excessive digital information overlaying
their physical surroundings. Bubbles serve as subtle prompts that
an object is interactive to balance informational availability with
spatial aesthetics.

3.1.4 Fixed Number of Top-Level Categories and Actions. The de-
cision to implement a fixed number of top-level categories and
actions within the system’s UI was driven by considerations of
usability and cognitive efficiency. Limiting the choice set helps miti-
gate decision fatigue and simplifies the interaction process, making

it easier for users to navigate the system’s functionalities. This de-
sign philosophy aligns with the Hick-Hyman Law [79], which states
that increasing the number of choices proportionally increases de-
cision time. By streamlining the number of options available, we
are also able to adopt a radial menu with constant reach distance
[64, 67] instead of dropdown lists, and we facilitate quicker user
decision-making and enhance the overall user experience.

In summary, we aim to deliver a seamless, efficient, and immer-
sive XR experience by opting for an object-centric interactionmodel,
employing a world-space UI, utilizing visual bubbles for indicating
interactability, and limiting the complexity of user choices.

3.2 Categories of Actions

Our system facilitates fluid interactions with a single or multiple
objects and enables users to take various digital actions, such as
querying real-time information, asking questions, sharing the ob-
jects with contacts, or adding spatial notes. Inspired by sub-menus
in traditional context menus on desktop computing, we categorized
our seven implemented actions into four categories, which we list
below.

(1) Information: provide an overview; ask a question
(2) Compare: ask to compare multiple objects within the view
(3) Share: send object to a contact; add to shopping list
(4) Anchor: notes; timer; countdown

In the above list, the first two categories (Information and
Compare) represent traditional Visual Question Answering (VQA)

tasks, while the other two (Share andAnchor) represent traditional
widget tasks. We open-source our code on GitHub

3 and anticipate
that the list of integrated actions will be extended in the future by
the XR community.

3.3 System Architecture

The implementation of XR-Objects involves a series of steps to
augment real-world objects with functional context menus as illus-
trated in Figure 4. These steps can be categorized as (1) detecting
the objects, (2) localizing and anchoring onto the object, (3) cou-
pling each object with an MLLM for metadata retrieval, and (4) on
user input, executing the actions and displaying the output. We use

3XR-Objects open-source project: https://github.com/google/xr-objects

https://github.com/google/xr-objects
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by stitching together the relevant objects in the scene before passing the query to an MLLM instance.

Unity and its AR Foundation
4 to bring the necessary components

for these steps together to build our system. Below, we detail the
components and processes that constitute this framework.

3.3.1 Object Detection and Classification. The foundation of XR-
Objects is its robust object detection module, which leverages the
capabilities of the Google MediaPipe library [59]. This module em-
ploys a convolutional neural network (CNN) optimized for mobile
devices, providing on-device and real-time classification of objects
within the user’s camera feed. The system detects objects by pro-
viding a class label (e.g., “bottle”, “monitor”, “plant”) and generating
2D bounding boxes, which serve as preliminary spatial anchors for
subsequent AR content. The current CNN model is based on the
COCO dataset [54] which provides 80 labels.

To prioritize user privacy and data efficiency, XR-Objects fur-
ther processes only those object regions that are of relevance to
the user’s current interaction context. For instance, even though
MediaPipe inherently also identifies people in the scene, a region
classified as a “person” by the on-device model is not sent to the
MLLM-based cloud query system to preserve the privacy of users
in the surroundings. Similarly, other classes of objects that are rele-
vant or irrelevant to the user can be customized depending on the
AR application (e.g., a plant species search AR app could only run
queries for the “plant” class).

3.3.2 3D Localization and Anchoring. With the object identified,
XR-Objects proceeds to generate AR menus. These menus are
spatially anchored to the objects using a combination of the ini-
tial 2D bounding boxes and depth information of the scene. We
us raycasting to translate the 2D object locations into precise 3D
coordinates.

In our system, we used the depth map on the phone [28] gen-
erated through depth from motion [77] by ARCore. Because the
location returned by the object detector from the previous step is in
2D screen space, we raycast from this point toward the depth map
4Unity AR Foundation: https://unity.com/unity/features/arfoundation

to “hit” the object and find the corresponding 3D object location in
world space, as shown in Figure 4.

At the computed 3D location, we instantiate our object proxy
template, which was developed as a prefab (i.e., fully configured
GameObjects saved in the AR project for reuse) in Unity. The AR
engine ensures that the object proxy stays anchored even when the
user changes their view angle.

The object proxy contains the object’s context menu, however,
before the user selects the object, it shows up as only a small semi-
transparent sphere on the object, which signals to the user that the
object has been recognized by the system. Only when the user taps
this sphere, the full context menu is shown, otherwise, the menu
remains hidden to avoid visual overload.

Our algorithm also includes extra steps to ensure the object prox-
ies do not get spawned at undesired locations or get erroneously
duplicated for the same object.

3.3.3 Coupling Each Object with a MLLM. We couple a MLLMwith
each identified object; thus, we run one LLM conversation instance
per object, as shown in Figure 5. We use the cropped bounding box
from the first step as the visual input to the MLLM. We also store
the conversation history by referring to a conversation ID inter-
nally. This object-specific approach enables the MLLM to provide
detailed information about the object that extends far beyond the
capabilities of traditional object classifiers. For example, it can fur-
nish the object with a wide array of data, including but not limited
to product specifications, historical context, and user reviews. As
demonstrated in Figure 4, the system is capable of recognizing an
object as "Superior Dark Soy Sauce," rather than merely identifying
it as a "bottle"—the generic label typically assigned by standard
object detection processes in the preceding step.

For our MLLM, we use PaLI [10], which runs in the cloud and
takes as input the captured region of interest (i.e., object’s cropped
image). The MLLM system is able to simultaneously query the
Internet (via Google Search) to retrieve additional metadata about
the object, e.g., prices and user ratings in the case of a product.

https://unity.com/unity/features/arfoundation
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3.3.4 Menu Interaction. Interactions within XR-Objects are facili-
tated through a multimodal interface, supporting both touch and
voice inputs. This flexible interaction model allows users to engage
with the system in a manner that best suits their preferences and
the current context. For voice interactions, the system incorporates
a speech recognition engine5, which enables the processing of nat-
ural language commands and queries. As the feedback mechanism,
certain user actions, such as selecting a menu option or asking a
question, are reflected in the panel overlaid on the object.

When the object is selected by the user, the actions, described in
the previous section, are shown. Once an action’s button is tapped,
the interaction starts in a panel overlaid on the object.

Information retrieval. For the actions that retrieve real-time data
(e.g., getting the answer to the user’s question), we use the object’s
MLLM instance. For instance, when the "info" button is selected, the
MLLM-returned object summary is shown. We use the following
prompt to create an object summary:

Provide the information from the following list that makes

sense for this object. Fill in the missing “. . . " using info from the

Internet. Exclude the one that are irrelevant. Divide the relevant

ones with a “*". * Price: . . . (give price+vendor+score/ rating) *

Cheaper alternatives: name - price * Main ingredients: . . . (top

2) * Calories: . . . * Allergens: . . . * Instructions: . . . (short) *

Care: . . . (if fashion/tool/plant). Use extremely short answers

and exclude answers that are ‘None’ or ‘n/a’ or ‘irrelevant’.

Limit to 30 words.

If the user wants to ask a more specific question, they can tap
the “ask a question" button, and directly speak out a question.

Object comparisons. For the object compare functionality, we
use a dedicated “object comparer” method, which allows us to
compile multiple identified objects’ information and provide the
combined result as input to a dedicatedMLLM instance. As shown in
Figure 5, the object comparer stitches all objects’ images together
and provides its MLLM instance when the user asks a question
𝑝𝑟𝑜𝑚𝑝𝑡𝑢𝑠𝑒𝑟 about multiple objects using the “compare" button. The
returned response is shown to the user.

If the user’s prompt is a “which” question, the object comparer
also executes a follow-up MLLM query under the hood to help
visualize the results for this “filtering” type of user question. For
this reprompting, we augment the user’s prompt 𝑝𝑟𝑜𝑚𝑝𝑡𝑢𝑠𝑒𝑟 with
a sub-prompt 𝑝𝑟𝑜𝑚𝑝𝑡𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔 such as:

Considering that the items are ordered from left to right with

the first object being index 0, tell me ONLY the correct indices,

written as numbers.

Thus, the MLLM returns only the right indices, which we use to
mark the relevant objects in the AR view as shown in the bottom-
right screenshot in Figure 5.

4 PRELIMINARY EVALUATION

We conducted a user study comparing XR-Objects to a state-of-the-
art MLLM assistant interface (Gemini app6), referred to as "Chatbot"
from here on, for contextual information retrieval and object-centric
5Speech Recognizer: https://github.com/EricBatlle/UnityAndroidSpeechRecognizer
6Google Gemini: https://play.google.com/store/apps/details?id=com.google.android.
apps.bard

interaction. Participants were asked to perform a number of timed
VQA tasks and widget interactions in simulated grocery shopping
and at-home scenarios, and provided feedback on their experience
with each interface through a survey.

4.1 Methods

Participants. We recruited 8 participants (6 male, 1 female, 1 pre-
ferred not to disclose) between the ages of 25-45. All were fluent
English speakers (4 native), were regular shoppers, and all but 1
had used smartphone-based AR at least once.

Task & Procedure. We designed a scenario consisting of a sim-
ulated grocery shopping experience (Figure 6a) followed by an
at-home experience (Figure 6b) in which users complete a set of 6
tasks using either XR-Objects or Chatbot. The tasks (T1-T6) are
listed in Table 1, and included retrieving/comparing information
about multiple objects, sharing objects, and anchoring widgets.

Scenario A
Grocery Store:

T1. 2-object search (Shelf 1)
Which soy sauce has less protein?

T2. N-object search (Shelf 2)
Which beans have the most fat?

T3. Share object
Send a message to Mom asking if 
she’d like you to buy Dried Mango.

Scenario B
Grocery Store:

T1. 2-object search (Shelf 1)
Which oil is from Spain?

T2. N-object search (Shelf 3)
Which drink has the least calories?

T3. Share object
Send a message to Mom asking if 
she’d like you to buy Dried Mango.

Home (same for both Scenarios):

T4. Get single object info
Find brew time for the tea

T5. Set/anchor a timer
Set a timer for the tea

T6. Create/anchor a note
“buy more juice”

Home (same for both Scenarios):

T4. Get single object info
Find brew time for the tea

T5. Set/anchor a timer
Set a timer for the tea

T6. Create/anchor a note
“buy more juice”

Table 1: Task descriptions given in the user study.

For XR-Objects, participants were instructed to use the Com-

pare feature for T1 and T2, the Share feature for T3, the Info

feature for T4 and the Anchor feature for T5 and T6. For Chatbot,
participants were instructed to take/upload a photo along with a
query (using their preferred method of text and/or voice) to the chat
for T1, T2, and T4. For the remaining tasks, participants were told
to use Chatbot as if it were connected to a smartphone assistant.

First, participants were first given a brief introduction to the
study, provided informed consent, and filled out a demographics
survey. The experimenter then walked through the functionality of
both XR-Objects and Chatbot, and participants then completed a
set of sample tasks on an object not included in the study.

Each participant completed the tasks in both scenarios A and
B. The ordering of both condition (XR-Objects, Chatbot) and sce-
nario (A, B) were counterbalanced between participants to prevent
ordering effects. Once the tasks were completed, participants were
free to use the tool freely for up to five additional minutes however
they chose. Participants then completed a post-condition survey
on their qualitative experience.

https://github.com/EricBatlle/UnityAndroidSpeechRecognizer
https://play.google.com/store/apps/details?id=com.google.android.apps.bard 
https://play.google.com/store/apps/details?id=com.google.android.apps.bard 
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Figure 6: User study setup with mock grocery store (a) and

at-home (b) environments. Examples of usingXR-Objects in

each case are shown in (c) and (d), respectively.

After a two minute break, this was repeated with the remaining
condition and scenario. Upon completing the tasks with both condi-
tions, participants completed a final survey comparing interactions
with XR-Objects and Chatbot (Appendix ??). Overall, the study
took approximately 45 minutes.

Measures. As one of our measures, we recorded the time required

to complete tasks T1-T6 for each condition as ameasure of overall
system performance.

Following the completion of all tasks in a given condition (XR-
Objects, Chatbot), participants completed a survey evaluating their
interactions, adapted from theHuman-AI Language-based Inter-

action Evaluation (HALIE) framework proposed by Lee et al. [50].
Participants rated their agreement with the following statements
(among others) on a 5-point Likert scale. Due to space constraints,
the complete survey is provided in Appendix A.1.

While the user study was conducted on a smartphone due to lim-
itations of head-mounted display (HMD) camera access, our vision
for XR-Objects is for it to run entirely on the HMD. Therefore, we
conducted a post-study form factor survey in which participants
envisioned interacting with XR-Objects on an HMD (e.g., Apple
Vision Pro). The survey questions (provided in Appendix A.2) were
based on HALIE, but formulated as a forced-choice comparison
between the Chatbot and XR-Objects interaction paradigms.

Analysis. We analyze completion time using traditional t-tests,
and confirm normality via Shapiro-Wilk Test. Skewness (𝛾1) quan-
tifies the asymmetry of a given distribution’s shape. For a normal
distribution, values of |𝛾1 | < 0.5 indicate an approximately symmet-
ric distribution. Values of 0.5 < |𝛾1 | < 1 suggest moderate skewness,
while |𝛾1 | > 1 suggests a highly skewed distribution. This statis-
tical approach, in contrast to visual methods like histograms, is
particularly useful for analyzing distributions in Likert-scale ques-
tionnaires [47].

To analyze the data derived from our forced-choice question-
naires, we use a Generalized Linear Model (GLM) based on the
Logit Binomial distribution. Unlike regular linear models, GLMs
enable regression beyond Gaussian distributions. Considering this
data follows a Bernoulli distribution (i.e., datapoints are 0 or 1), our
GLM is effectively a log-odds model.

4.2 Results

4.2.1 Time. On average, participants using XR-Objects required
significantly less time (M=217.5s, SD=58s) to complete all tasks
when compared to the participants using Chatbot (M=286.3s, SD=71s),
illustrated in Figure 14 and confirmed by a paired t-test (t=-2.8, df=5,
p=0.01). This translates to a roughly 31% in task completion time
on average for Chatbot users compared to XR-Objects.

4.2.2 HALIE Survey. We analyze the HALIE survey results using
both traditional non-parametric tests for ordinal data and skewness
calculations to assess the distribution of responses (Figure 7).

Chatbot (n=8) XR-Objects (n=8)

Helpfulness [H]

Enjoyment [J]

Satisfaction [S]

Responsiveness [R]

Retrieval [ER]

2 Comparison [E2]

Tool [E]

Strongly
Disagree

Strongly 
Agree

HALIE Survey

NeutralDisagree Agree

N Comparison [En]

Ease

Figure 7: Likert-scale results of the HALIE survey.

While we find no significant differences between Chatbot and
XR-Objects on any factor of the HAILE survey (Wilcoxon Paired

tests), we find that both approaches of MLLM-enabled real-world
search (either via Chatbot or XR-Objects) appear positively rated.
Thus, we proceed with a skewness analysis. The most significant
skewness of the questionnaire data were found on the questions
regarding Ease of Use, and Satisfaction. In particular, Ease of In-
formation Retrieval showed both conditions were highly skewed:
XR-Objects (𝛾1 = 1.19) Chatbot ( 𝛾1 = 1.8), making a strong case
for MLLM-enabled information retrieval in any form.

Further exploration shows that the responses for Tool Ease were
highly skewed for Chatbot (𝛾1 = 2.25). However, those same skews
weren’t sustained on the XR-Objects condition (𝛾1 = 0.03). We
hypothesize that this is becauseXR-Objects is a research prototype,
while the Chatbot used was a fully released product. Nevertheless,
we found a moderate skewness on the questionnaire results for the
Satisfaction metric only for our prototype XR-Objects (𝛾1 = 0.7),
but not for the Chatbot condition (𝛾1 = 0.4).

4.2.3 Form Factor (Phone or HMD). The results of the form fac-
tor survey are summarized in Figure 15. We applied a GLM with
two factors: FormFactor (phone, HMD) and Question (across 12
questionnaire levels), assuming a binomial distribution. Given that
the dependent variable’s responses were binary (XR-Objects or
Chatbot), traditional linear models were inadequate as they are
tailored to fit Gaussian distributions only. The GLM approach al-
lowed for fitting a Bernoulli distribution and conducting appro-
priate tests. Our analysis revealed a significant FormFactor effect
𝐹 (191, 179) = 1.917, 𝑝 < 7.05𝑒 − 08, 𝜂2 = 3.8.
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To further assess the model’s effectiveness in predicting Form
Factor, we examined the model deviance (−2𝐿𝐿 = 209) and com-
pared it against the null model’s deviance, which assumed Form
Factor was not a consideration (−2𝐿𝐿 = 253). This comparison
demonstrated that our model was more adept at accounting for the
variance, where a higher deviance signifies a poorer fit. A chi-square
test contrasting the twomodels yielded a significant difference, with
𝜒2 = 1.6 × 10−5, 𝑑 𝑓 = 12.

These findings show a clear preference for XR-Objects in the
context of the HMD form factor. Conversely, when using a phone,
participants’ preferences between the AI tools (Chatbot or XR-
Objects) were split, validating our hypothesis regarding the opti-
mal form factor for tools like XR-Objects.

4.3 Qualitative Feedback

We provide key insights from the responses that participants pro-
vided in their completed surveys.

Helpfulness & Efficiency. Users valued the system’s streamlined
interactions: "It saves me from looking up info myself... I just ask and

it finds the info for me" (P1). "Object selection and comparison was

very intuitive; it was easy to get information in exactly the context I

needed" (P3).

Comparative Advantage. The direct comparison with existing
solutions like Google Lens and traditional LLMs was enlightening: "I
was able to complete the same tasks much faster + easier" (P1). "This
has a lot more options, and is more flexible [in] what information it

can provide" (P2). "Comparing products is very helpful... less wordy

than [Chatbot] and gives an answer" (P2).

Possibilities for UX Improvement. Several participants pointed
out ergonomic challenges, e.g., the need to hold the phone at eye
level, which informs future glass interactions as discussed in Sec-
tion 6: "have to raise the phone at eye level, which is tiring" (P1).

5 APPLICATIONS

Through AOI, we envision XR-Objects to be useful across a variety
of real-world applications. By enabling in situ digital interactions
with non-instrumented analog objects, we can expand their utility
(e.g., enabling a pot to double as a cooking timer), better synthe-
size their relevant information (e.g., comparing nutritional value),
and overall enable richer interactivity and flexibility in everyday
interactions. Next, we present five example application scenarios
from a broad design space we envision as illustrated in Figure 8,
highlighting the value of XR-Objects and its potential use cases.

5.1 Cooking

Unlike traditional cooking aids, which rely on static recipes or digi-
tal screens detached from the cooking environment, XR-Objects in-
tegrates digital intelligence directly into the kitchen, making the
cooking process informative and engaging (Figure 1). In our aug-
mented cooking app, as the user places ingredients on the kitchen
counter, our system recognizes each item and projects relevant in-
formation, such as nutritional facts, potential allergens, or freshness
indicators, directly on the ingredients. Users can interact through
voice commands or touch elements to ask about potential recipes

home work shopping phone

headset

individual between 
objects

between 
object & digital

nature sports mobility

temporary

persistent

context form factor

persistence

object relationships

Figure 8: Envisioned design space for XR-Objects use cases.

or to compare ingredients. Using stopwatch or countdown timers,
the system embeds the guidance into the cooking space itself. The
user can further share the final product with their contacts.

This scenario shows howXR-Objects can assist users withmulti-
step tasks. For instance, P5 noted: “XR-Objects’s main benefit com-

pared to Lens is spatializing output, [which] is super helpful for la-

beling multi-step tasks like cooking or mechanical fixing." While we
illustrated cooking in this example, we envision our system can
scale to further multi-step use cases, such as mechanical fixing.

5.2 Shopping

As discussed in Section 4, XR-Objects can serve as an assistant
when browsing and comparing items. For instance, at a store, a user
might want to get further information about a product, such as the
unit price, calorie information, or cheaper alternatives. Figure 9
shows an example where a tourist asks which of the detergents
is suitable for black clothes, as the product information is written
in a foreign language. In the future, these experiences could be
further personalized by, e.g., automatically filtering all the products

Figure 9: Real-time spatial assistance in selecting the appro-

priate laundry detergent at a store.
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identified in the scene based on the user’s personal profile and
recommending the one that best suits their needs [82].

5.3 Discovery

XR-Objects enables users to discover new information about their
surroundings by simply pointing their device at objects of interest.
As shown in Figure 10, a user points their device at a vase containing
different flowers and instantly receives information about each
flower type, including its name, average price, or care instructions.
This on-demand, spatial discovery could transform everyday objects
that typically go unnoticed into avenues for appreciation.

Figure 10: Discovering plant species in the environment

through spatial, on-demand MLLM queries.

5.4 Productivity

For productivity, we envision XR-Objects could enhance physical
documents with digital capabilities such as information retrieval
and content anchoring. In Figure 11, a user reading a text book
asks how it can be used to solve a particular type of equation, and
anchors the response to the textbook for future reference. With
further capabilities such as real-time optical character recognition
(OCR) to digitize text, users could store and share digital copies of
their physical documents for versioning and collaboration.

Figure 11: Interaction mock-up of using XR-Objects for pro-

ductivity on an HMD with direct touch interactions enabled.

5.5 Learning

XR-Objects can offer immersive or interactive learning experiences
by augmenting physical objects with contextual educational con-
tent. By pointing their device at an object, users may access relevant
explanations or demonstrations that enhance their understanding
of the subject matter. For instance, as illustrated in Figure 12, XR-
Objects could facilitate learning healthy eating habits for children.
A child can point their device at a fruit bowl and instantly see
information about the different fruits, such as their names, nutri-
tional values, and the vitamins they contain. We also envision users
leaving spatial notes on objects, and these could have changeable
different visibility options. For instance, a user might leave a per-
sonal note about something they found out which they would like
to attach as a reminder. They might further set the visibility to a
specific group, e.g., their family members or coworkers, so that
others can see and be aware of the new information.

Figure 12: Example of anchoring contextual educational

notes over real-world objects using XR-Objects.

5.6 IoT Connectivity

XR-Objects’s XR interface is complemented by a MLLM backend,
unlike traditional IoT control interfaces that often limit interactions
with devices to discrete apps. Through its object tracking, XR-
Objects could enable users to interact with their IoT devices in a
spatial context to allow for real-time visual feedback and control
within their immediate environment.

For example, in Figure 13, the user controls their smart speaker
using XR-Objects. They adjust the volume of the speaker using the
touch UI or language commands utilizing the MLLM backend. Such

Figure 13: XR-Objects detects devices, such as speakers, and

provides custom UI elements for IoT control.
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connectivity scenarios expand beyond speakers and could also be
enabled on thermostats, smart lights, and other edge IoT devices.

6 DISCUSSION

Our daily environment is ubiquitously augmented with various
forms of annotations, from product packaging and price tags to
traffic signs and personali post-it reminders. This ubiquitous aug-
mentation, a rudimentary form of AR, is facilitated by language,
writing, and scalable printing technologies. It serves as a means to
asynchronously convey contextual information, albeit in a static
and limited manner, requiring manual interpretation and applica-
tion by the user. Although machine-readable markers like barcodes,
QR codes, and NFC tags have simplified certain interactions, they
fall short in offering dynamic, object-relevant actionable insights.

Augmenting Objects with Intelligence. Advancements in com-
puter vision and LLMs now enable devices to not only recognize
generic object categories but also distinguish between individual
instances based on their spatial context. This unlocks the potential
for personalized, instance-specific interactions to transform objects
into intelligent entities with their own "memories" of past inter-
actions. Accordingly, AOI has the potential to transition from the
concept of smart tools to a reality where intelligence is an inherent
characteristic of every object.

Context-Aware Interactions. While the list of actions we currently
provide in our system is not exhaustive, we view it as a founda-
tion that can be expanded by the community. Looking ahead, we
anticipate contributions from researchers and practitioners, e.g.,
integrating methods such as OmniActions [52] for custom action
suggestions, WorldGaze [60] for gaze input, and GazePointAR [49]
for pronoun disambiguation in speech interactions. Using these
extensions, XR-Objects could evolve to become even more attuned
to the user’s context (e.g. current location and activity, object rela-
tionships, persistence of object and data, see Figure 8) to further
customize actions and information based on historical interactions
with objects in specific settings. For instance, viewing a food item’s
packaging in a store might trigger suggestions for understand-
ing its allergens and nutritional content, while the same item at
home could offer cooking instructions and allow the user to di-
rectly set a digital cooking timer to the appropriate duration. On
certain smartphones, for instance, Siri Suggestions7 already offer
context-aware recommendations. The functionality of this sort of
context-awareness could be extended using AR interfaces.

XR-Objects on AR Headsets and Glasses. Participants expressed
enthusiasm for XR-Objects on wearable AR. P3 mentioned the
current challenges of typing on headsets and the advantages of
voice and selection-based interfaces such as XR-Objects. P2 and P8
emphasized the practicality of using features like spatial timers on
glasses formore glanceable interactions. They notedXR-Objects en-
hance the ease of comparing and selecting objects. P8 suggested
potential cross-device interactions, such as starting a task on glasses
and continuing on a phone for detailed comparisons.

As noted in Section 3, a possible implementation on today’s
headsets is currently challenging due to restricted access to camera
7Siri Suggestions on iPhone: https://support.apple.com/guide/iphone/about-siri-
suggestions-iph6f94af287/ios

streams (Quest 3) or limited FOV (HoloLens). As an alternative,
future projects might explore attaching a webcam onto a Quest

3 and manually calibrating the camera for XR-Objects detection
and interactions. Our open-source repository [34] contains a Unity
guide for processing a webcam feed on headsets to implement this.
We envision that on headsets, developers could use mid-air gestures,
rays, or other hand-based interaction methods [5].

LLM: Hallucinations and AI Improvements. We recognize LLM as
an emerging technology. In this work, our primary focus is enhanc-
ing spatial interaction, not solely LLM accuracy. As AI evolves, so
will our system, incorporating user feedback to refine LLM interac-
tions based on object-centric data.

In our study, participants appreciated XR-Objects’ reduced risk
of hallucination due to its object-instance-based spatialization. P4
noted: “The control and feedback for intermediate steps – which

object was recognized, what the model thinks it is – afforded by XR-

Objects provides more confidence that the model isn’t hallucinating

and makes it easier to spot when it is.”

Leveraging Emerging Artificial General Intelligence (AGI). The
integration of emerging AGIs [62], foreshadowed by models like
Gemini or GPT-4, opens up new opportunities for autonomous
problem-solving within XR environments. AGI’s potential to dy-
namically generate user interfaces in response to user queries could
transform thewaywe interact with our physical world. For instance,
the user could ask the system to visualize the nutritional values of a
product in a pie chart, i.e., by generating the code to create the user
interface and graphs on-the-fly without being pre-programmed to
create the chart. Going a step further, one may imagine AGI-driven
systems that not only respond to user prompts but also proactively
offer assistance surfaced through a new action in the context menu,
such as assembling a set of Lego blocks into a desired structure
through real-time, augmented instructions.

Object Detection and Selection. Our real-time object detection
operates at 31 fps on a Galaxy S21 smartphone without needing pre-
processing. MLLM queries respond in approximately three seconds.
Currently, the object selection is bound to theMediaPipe classifier’s
output. We plan to explore enhancements like subregion selection,
as P1 suggested: "would be nice [to] manipulate the scene with touch

gestures [to] lead the AI to detect a thin object."

Linking Realities. As we adopt these new innovations in AI and
XR, we are likely to see significant changes in how we interact
with the physical objects around us [41, 63]. We envision a future
where physical items no longer need conventional labels or tags,
relying instead on AOI for context and interaction. The merging
of digital and physical worlds might bring about new connections,
like direct links between digital files and physical items. This could
start a new paradigm where the digital and physical worlds blend
together smoothly, without clear boundaries.

7 CONCLUSION

In this paper, we introduced Augmented Object Intelligence (AOI),
a novel paradigm that seamlessly integrates digital capabilities into
physical objects through the use of XR-Objects. Our prototype
system demonstrates the potential of AOI to transform how users

https://support.apple.com/guide/iphone/about-siri-suggestions-iph6f94af287/ios
https://support.apple.com/guide/iphone/about-siri-suggestions-iph6f94af287/ios
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interact with their surroundings by leveraging advancements in
computer vision, spatial understanding, and Multimodal -LLM. The
results of our user study show that XR-Objects significantly out-
performs traditional multimodal AI interfaces, with participants
completing tasks an average of 24% shorter time and reporting
higher levels of satisfaction, ease of use, and perceived respon-
siveness. By enabling familiar, interactions with everyday objects
through anchored AR content and natural language processing, XR-
Objects paves the way for a future where the boundaries between
the physical and digital worlds become increasingly blurred. As we
continue to expand the capabilities of XR-Objects, we envision a
wide range of applications spanning domains such as cooking, pro-
ductivity, and connectivity, ultimately leading to a more engaging,
efficient, and immersive way of interacting with our surroundings.
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A STUDY MATERIALS

A.1 HALIE Survey

Following the completion of all tasks in a given condition (XR-
Objects, Chatbot), participants rated their agreement with the
following statements on a 5-point Likert scale, and provided open
ended answers to the questions denoted with (*O):

H (Helpfulness) Independent of its fluency, the AI Tool was
helpful for completing my task.

*O1 (Helpfulness)What kinds of aspects did you find helpful or
not helpful and why? (Give a concrete example if possible.)

J (Enjoyment) It was enjoyable using the AI tool to accom-
plish the tasks.

S (Satisfaction) Independent of its fluency, I am satisfied with
how the AI tool provided its answers.

R (Responsiveness) Independent of its fluency, I found the
AI tool to be a responsive system.

E (Ease) Overall, it was easy to interact with the AI Tool and
accomplish the tasks.

ER (Ease) Getting information about an object was easy using
the AI tool.

E2 (Ease) Comparing two objects was easy using the AI tool.
EN (Ease) Comparing more than two objects was easy using the

AI tool.
*O2 (Change) Did you change how you chose to interact with

the AI Tool over the course of the task? If so, how?
*O3 (Description) What adjectives would you use to describe

the AI Tool?
*O4 (Compare)Howdid this interaction compare to your regular

in-person shopping and at-home task experiences?

A.2 Form Factor Survey

For each question, participants selected either Chatbot orXR-Objects.
They did this questionnaire twice, once we were asking participants
to think XR-Objects were going to run on a Phone, the second
time thinking XR-Objectswould run on a headset form factor. This
questionnaire included the adapted HALIE questions (H, J, S, R, ER,
E2, EN) as well as an additional set of questions detailed below:
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EC (Ease Communications) Sending a message about one of
the grocery items would be easier on headset/phone using:

ET (Ease Timer) Setting a timerwould be easier on headset/phone
using:

EN (Ease Note) Creating a note (e.g., reminder to buy more
juice) would be easier on a headset/phone using:

IS (Improved Shopping)Which AI Tool running on a head-
set/phone would represent a better change compared to your
current experience with (in-person) shopping?

P (Preference) Overall, which AI tool would you prefer on
headset/phone?

A.3 Results

The analysis of completion time and form factory survey is depicted
in Figure 14 and Figure 15, respectively.
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Figure 14: Comparison of task completion times betweenXR-

Objects andChatbot. The box plot visualizes the distribution

of data, individual data points, within-subject comparisons

(n=6), and the distribution for each condition.
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Figure 15: Marimekko-chart mosaic with the form factor sur-

vey results, showing a preference for XR-Objects over Chat-

bot on the HMD condition.
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