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Abstract. We introduce the preliminary design of a novel vision-augmented 

touch system called HandSight intended to support activities of daily living 

(ADLs) by sensing and feeding back non-tactile information about the physical 

world as it is touched. Though we are interested in supporting a range of ADL 

applications, here we focus specifically on reading printed text. We discuss our 

vision for HandSight, describe its current implementation and results from an 

initial performance analysis of finger-based text scanning. We then present a 

user study with four visually impaired participants (three blind) exploring how 

to continuously guide a user’s finger across text using three feedback conditions 

(haptic, audio, and both). Though preliminary, our results show that participants 

valued the ability to access printed material, and that, in contrast to previous 

findings, audio finger guidance may result in the best reading performance.  
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1 Introduction 

Over 285 million people have visual impairments (VI) worldwide—including 39 

million who are blind—that can affect their ability to perform activities of daily living 

[1]. In many countries, such as the US [2], VI prevalence is increasing due to aging 

populations. While previous research has explored combining mobile cameras and 

computer vision to support people with VI for at-a-distance information tasks such as 

navigation (e.g., [3]–[8]), facial recognition (e.g., [9]–[12]), and spatial perception 

(e.g., [13]–[15]), they fail to support proximal information accessed through touch. 

We are pursuing a new approach: a vision-augmented touch system called HandSight 

that supports activities of daily living (ADLs) by sensing and feeding back non-tactile 

information about the physical world as it is touched. Although still at an early stage, 

our envisioned system will consist of tiny CMOS cameras (1×1mm
2
) and micro-

haptic actuators mounted on one or more fingers, computer vision and machine learn-



ing algorithms to support fingertip-based sensing, and a smartwatch for processing, 

power, and speech output; see Figure 1. Since touch is a primary and highly attuned 

means of acquiring information for people with VI [16], [17], we hypothesize that 

collocating the camera with the touch itself will enable new and intuitive assistive 

applications.  

While we are interested in supporting a range of applications from object recognition 

to color identification, in this paper we focus on the challenge of reading printed text. 

Our overarching goal is to allow blind users to touch printed text and receive speech 

output in real-time. The user’s finger is guided along each line via haptic and non-

verbal audio cues. At this stage, our research questions are largely exploratory, span-

ning both human-computer interaction (HCI) and computer vision: How can we effec-

tively guide the user’s finger through haptic and auditory feedback to appropriately 

scan the target text and notify them of certain events (e.g., start/end of line or para-

graph reached)? How accurately can optical character recognition (OCR) be achieved 

at a speed that is responsive to the user’s touch? How do the position, angle, and 

lighting of the finger-mounted camera affect OCR performance? 

To begin examining these questions, we pursued two parallel approaches. For the 

computer vision questions, we developed an early HandSight prototype along with 

efficient algorithms for perspective and rotation correction, text detection and track-

ing, and OCR. We present preliminary evaluations and demonstrate the feasibility of 

our envisioned system. For the HCI-related questions, we developed a custom test 

apparatus on the Apple iPad that simulates the experience of using HandSight, but 

provides us with additional experimental control and allows us to more precisely track 

the user’s finger in response to feedback conditions. Using this setup, we report on a 

preliminary evaluation with four VI participants (three blind) across three finger guid-

ance conditions: audio, haptics, and audio+haptics. Findings suggest that audio may 

be the most intuitive feedback mechanism of the three. 

 

   

   
(a) Example HandSight Envisionment (w/5 instrumented fingers) (b) Ring Form Factor (c) Nail Form Factor (d) 2-Finger Setup 

Figure 1: HandSight uses a 1×1mm2 AWAIBA NanEye 2C camera developed for minimally invasive 

surgeries (e.g., endoscopies) that can capture 250×250px images at 44fps. The above images: (a) a 

design mockup and (b-d) early form factors with the NanEye camera. In this paper, we explore a 

single camera implementation with a ring form factor in a text reading context (see Figure 2). 



Compared to the majority of emerging computer vision systems to support VI users, 

which use head- or chest-mounted cameras (e.g., [4], [12], [18]), our system offers 

two primary advantages: (i) collocation of touch, sensing, and feedback, potentially 

enabling more intuitive interaction and taking advantage of a VI individual’s high 

tactile acuity [16], [17]; (ii) unobtrusive, always-available interaction that allows for 

seamless switching between the physical world and vision-augmented applications. 

As a finger-mounted approach, our work is most similar to [19]–[21], described next. 

2 Related Work 

Scientists have long sought to support blind people in reading printed text (for a re-

view, see [22], [23]). Many early so-called “reading machines for the blind” used a 

sensory substitution approach where the visual signals of words were converted to 

non-verbal auditory or tactile modalities, which were complicated to learn but acces-

sible. Two such examples include the Optophone, which used musical chords or ‘mo-

tifs’ [24] and the Optacon, which used a vibro-tactile signal [25], [26]. With advances 

in sensing, computation, and OCR, modern approaches attempt to scan, recognize, 

and read aloud text in real-time. This transition to OCR and speech synthesis occurred 

first with specialized devices (e.g., [27]–[29]), then mobile phones (e.g., [30], [31]), 

and now wearables (e.g., [12], [21]). While decades of OCR work exist (e.g., [32]–

[35]), even state-of-the-art reading systems become unusable in poor lighting, require 

careful camera framing [36], [37], and do not support complex documents and spatial 

data [38]. Because HandSight is self-illuminating and co-located with the user’s 

touch, we expect that many of these problems can be mitigated or even eliminated. 

As a wearable solution, HandSight is most related to OrCam [12] and FingerReader 

[21]. OrCam is a commercial head-mounted camera system designed to recognize 

objects and read printed text in real-time (currently in private beta testing). Text-to-

speech is activated by a pointing gesture in the camera’s field-of-view. While live 

demonstrations with sighted users have been impressive (e.g., [39], [40]), there is no 

academic work examining its effectiveness with VI users for reading tasks. The pri-

mary distinctions between HandSight and OrCam are, first, hand-mounted versus 

head-mounted sensing, which could impact camera framing issues and overall user 

experience. Second, HandSight supports direct-touch scanning compared to OrCam’s 

indirect approach, potentially allowing for increased control over what is read and 

reading speed as well as increased spatial understanding of a page/object. Regardless, 

the two approaches are complementary, and we plan to explore a hybrid in the future.  

More closely related to HandSight, FingerReader [21] is a custom finger-mounted 

device with vibration motors designed to read printed text by direct line-by-line scan-

ning with the finger. Reported evaluations [21] of FingerReader are limited to a very 

small OCR assessment under unspecified “optimal” conditions, and a qualitative user 



study with four blind participants. The participants preferred haptic to audio-based 

finger guidance; this finding is the opposite of our own preliminary results, perhaps 

due to differences in how the audio was implemented (theirs is not clearly described). 

Further, our study extends [21] in that we also present user performance results.  

In terms of finger guidance, haptic and audio feedback have been used in numerous 

projects to guide VI users in exploring non-tactile information or tracing shapes. 

Crossan and Brewster [41], for example, combined pitch and stereo sonification with 

a force feedback controller to drag the user along a trajectory, and found that perfor-

mance was higher with audio and haptic feedback than haptic feedback alone. Other 

approaches have included sonification and force feedback to teach handwriting to 

blind children [42], speech-based icons or “spearcons” [43], vowel sounds to convey 

radial direction [44], and use of primarily tactile feedback to transmit directional and 

shape data [45]–[47]. Our choice to vary pitch for audio-based line tracing feedback 

with HandSight is based on previous findings [41], [43], [48]. Oh et al. [48], e.g., 

used sonification to support non-visual learning of touchscreen gestures; among a set 

of sound parameters tested (pitch, stereo, timbre, etc.), pitch was the most salient. 

3 System Design 

HandSight is comprised of three core components: sensors, feedback mechanisms, 

and a computing device for processing. Our current, early prototype is shown in Fig-

ure 2. Before describing each component in more detail, we enumerate six design 

goals.  

3.1 Design Goals 

We developed the following design goals based on prior work and our own experi-

ences developing assistive technology: (1) Touch-based rather than distal interaction. 

Although future extensions to HandSight could examine distal interaction, our focus 

is on digitally augmenting the sense of touch. (2) Should not hinder normal tactile 

function. Fingers are complex tactile sensors [49], [50] that are particularly attuned in 

people with visual impairments [16], [17]; HandSight should not impede normal tac-

tile sensation or hand function. (3) Easy-to-learn/use. Many sensory aids fail due to 

their complexity and high training requirements [22]; to ensure HandSight is ap-

proachable and easy to use, we employ an iterative, human-centered design approach. 

(4) Always-available. HandSight should allow for seamless transitions between its use 

and real-world tasks. There is limited prior work on so-called always-available input 

[20], [51]–[53] for blind or low-vision users. (5) Comfortable & robust. HandSight’s 

physical design should support, not encumber, everyday activities. It should be easily 

removable, and water and impact resistant. (6) Responsive & accurate. HandSight 



should allow the user to explore the target objects (e.g., utility bills, books) quickly—

the computer vision and OCR algorithms should work accurately and in real-time. 

3.2 Hardware 

Sensing Hardware. Our current prototype uses a single 1×1mm
2
 AWAIBA NanEye 

2C camera [54] that can capture 250×250 resolution images at 44 frames per second 

(fps). The NanEye was originally developed for minimally invasive surgical proce-

dures such as endoscopies and laparoscopies and is thus robust, lightweight, and pre-

cise. The camera also has four LEDs coincident with the lens (2.5mm ring), which 

enables dynamic illumination control. The small size allows for a variety of finger-

based form factors including small rings or acrylic nail attachments. In our current 

prototype, the camera is attached to an adjustable velcro ring via a custom 3D-printed 

clip. 

Processing. For processing, we use a wrist-mounted Arduino Pro Micro with an at-

tached Bluetooth module that controls the haptic feedback cues. The video feed from 

the camera is currently processed in real time on a laptop computer (our experiments 

used a Lenovo Thinkpad X201 with an Intel Core i5 processor running a single com-

putation thread at approximately 30fps). Later versions will use a smartwatch (e.g., 

Samsung Galaxy Gear [55]) for power and processing. 

Feedback. HandSight provides continuous finger-guidance feedback via vibration 

motors, pitch-controlled audio, or both. Our current implementation includes two 

vibration motors that are 8mm diameter disks and 3.4mm thick (Figure 2), though 

we are actively looking at other solutions (see Discussion). A text-to-speech system is 

used to read each word as the user’s finger passes over it, and distinctive audio and/or 

haptic cues can be used to signal other events, such as end of line, start of line, etc. 

3.3 CV Algorithm Design and Evaluation  

Our current HandSight implementation involves a series of frame-level processing 

stages followed by multi-frame merging once the complete word has been observed. 

   
(a) Close-up front view (b) Close-up side view (c) Full system view 

Figure 2: The current HandSight prototype with a NanEye ring camera, two vibration motors, and 

an Arduino. Finger rings and mounts are constructed from custom 3D-printed designs and fabric. 

Processing is performed in real-time on a laptop (not shown). 



Below, we describe our five stage OCR process and some preliminary experiments 

evaluating performance. 

Stage 1: Preprocessing. We acquire grayscale video frames at ~40fps and 

250x250px resolution from the NanEye camera (Figure 3). With each video frame, 

we apply four preprocessing algorithms: first, to correct radial and (slight) tangential 

distortion, we use standard camera calibration algorithms [56]. Second, to control 

lighting for the next frame, we optimize LED intensity using average pixel brightness 

and contrast. Third, to reduce noise, perform binarization necessary for OCR, and 

adapt to uneven lighting from the LED, we filter the frame using an adaptive thresh-

old in a Gaussian window; finally, to reduce false positives, we perform a connected 

component analysis and remove components with areas too small or aspect ratios too 

narrow to be characters.  

Stage 2: Perspective and Rotation Correction. The finger-based camera is seldom 

aligned perfectly with the printed text (e.g., top-down, orthogonal to text). We have 

observed that even small amounts of perspective distor-

tion and rotation can reduce the accuracy of our text 

detection and OCR algorithms. To correct perspective 

and rotation effects, we apply an efficient approach 

detailed in [56]–[58], which relies on the parallel line 

structure of text for rectification. We briefly describe 

this approach below. 

To identify potential text baselines, we apply a Canny 

filter that highlights character edges and a randomized 

Hough transform that fits lines to the remaining pixels. 

From this, we have a noisy set of candidate baselines. 

Unlikely candidates are filtered (e.g., vertical lines, intersections that imply severe 

distortion). The remaining baselines are enumerated in pairs; each pair implies a po-

tential rectification, which is tested on the other baselines. The baseline pair that re-

sults in the lowest line angle variance is selected and the resulting rectification is ap-

plied to the complete image.  

More precisely, the intersection of each pair of baselines implies a horizontal vanish-

ing point          in homogeneous coordinates. If we assume the ideal vertical 

vanishing point    [     ] , then we can calculate the homography, H, that will 

make those lines parallel. Let           [     ]  and calculate the perspective 

homography,   , using those values. The perspective homography makes the lines 

parallel, but does not align them with the x-axis. We must rotate the lines by an angle 

  using a second matrix,   . The complete rectifying homography matrix becomes: 

  

  

  

  

Figure 3: A demonstration of 

our perspective and rotation 

correction algorithm. 
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To investigate the effect of lateral perspective angle on performance, we performed a 

synthetic experiment that varied the lateral angle from -45° to 45° across five random-

ly selected document image patches. The raw rectification performance is shown in 

Figure 4a and the effect of rectification on character-level OCR is shown in Figure 4b 

accuracy (the algorithm for OCR is described below).  

Stage 3: Text Detection. The goal of the text detection stage is to build up a hierarchy 

of text lines, words, and characters. This task is simplified because we assume the 

perspective and rotation correction in Stage 2 has made the text parallel to the x-axis. 

First, we split the image into lines of text by counting the number of text pixels in 

each row and searching for large gaps. Next, we split each line into words using an 

identical process on the columns of pixels. Gaps larger than 25% of the line height are 

classified as spaces between words. Finally, we segment each word into individual 

characters by searching for local minima in the number of text pixels within each 

column. 

Stage 4: Character Classification. Real-time performance is important for respon-

sive feedback, which prevents us from using established OCR engines such as Tesser-

act. Thus, we compute efficient character features (from [59]), and perform classifica-

tion using a support vector machine (SVM). Each character candidate is centered and 

scaled to fit within a 32x32 pixel window, preserving the aspect ratio. The window is 

split into four horizontal and vertical strips, which are summed along the short axis to 

generate eight vectors of length 32 each. These vectors, along with the aspect ratio, 

perimeter, area, and thinness ratio make up the complete feature vector. The thinness 

ratio is defined as T=4π(A/P
2
) where   is the area and   is the perimeter. We com-

pensate for the classifier’s relatively low accuracy by identifying the top k most likely 

matches. By aggregating the results over multiple frames, we are able to boost  per-

formance. 

Stage 5: Tracking and final OCR result output. The camera’s limited field of view 

means that a complete word is seldom fully within a given frame. We must track the 

characters between frames and wait for the end of the word to become visible before 

we can confidently identify it. Character tracking uses sparse low-level features for 

efficiency. First, we extract FAST corners [60], and apply a KLT tracker [61] at their 

locations. We estimate the homography relating the matched corners using the ran-

dom sample consensus [62]. After determining the motion between frames, we relate 

the lines, words, and individual characters by projecting their locations in the previous 

frame to the current frame using the computed homographies. The bounding boxes 

with the greatest amount of overlap after projection determine the matches. When the 



end of a word is visible, we sort the aggregated character classifications and accept 

the most frequent classification. This process can be improved by incorporating a 

language dictionary model, albeit at the expense of efficiency. A text-to-speech en-

gine reads back the identified word. 

To investigate the effect of finger movement speed on OCR accuracy, we recorded 

five different speeds using a single line of text. The results are presented in Figure 4c. 

With greater speed, motion blur is introduced, and feature tracking becomes less ac-

curate. In our experience, a “natural” finger speed movement for sighted readers is 

roughly 2-3cm/s. So, with the current prototype, one must move slower than natural 

for good performance. We plan on compensating for this effect in the future using 

image stabilization and motion blur removal, as well as incorporating a higher frame 

rate camera (100fps). 

4 User Study to Assess Audio and Haptic Feedback 

Our current prototype implementation supports haptic and audio feedback, but how 

best to implement this feedback for efficient direct-touch reading is an open question. 

Ultimately, we plan to conduct a holistic user evaluation of the system to assess the 

combined real-time OCR and finger guidance for a variety of reading tasks. At this 

stage, however, our goal was to refine the finger guidance component of the system 

by conducting a preliminary evaluation of three types of feedback: (1) audio only, (2) 

haptic only, and (3) a combined audio and haptic approach. We conducted a user 

study with four visually impaired participants to collect subjective and performance 

data on these three types of feedback. To isolate the finger guidance from the current 

OCR approach, we used a custom iPad app that simulates the experience of using the 

full system.  

4.1 Method 

Participants. We recruited four VI participants; details are shown in Table 1. All four 

participants had braille experience, and three reported regular use of screen readers.  

   
(a) Performance of lateral perspective 
and rotation rectification algorithm. 

(b) Effect of lateral perspective angle on 
accuracy (before and after correction). 

(c) Effect of finger speed on character- 
and word-level accuracy. 

Figure 4: Results from preliminary evaluations of our (a-b) Stage 2 algorithms and (c) the effect of 

finger speed on overall character- and word-level accuracy.  
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Test apparatus. The setup simulated the experience of reading a printed sheet of 

paper with HandSight (Figure 5). It consisted of the hand-mounted haptic component 

of the HandSight system controlled by an Arduino Micro, which was in turn connect-

ed via Bluetooth to an Apple iPad running a custom experimental app. The iPad was 

outfitted with a thin foam rectangle as a physical boundary around the edge of the 

screen to simulate the edge of a sheet of paper, and was further covered by a piece of 

tracing paper to provide the feel of real paper and to reduce friction. The app dis-

played text documents, guiding the user to trace each line of the document from left to 

right and top to bottom. As the user traced their finger on the screen, text-to-speech 

audio was generated, along with the following feedback guidance cues: start and end 

of a line of text, end of a paragraph, and vertical guidance for when the finger strayed 

above or below the current line. Lines were 36 pixels in height and vertical guidance 

began when the finger was more than 8 pixels above or below the vertical line center.  

Feedback conditions tested. We compared three finger guidance options: 

 Audio only. All guidance cues were provided through non-speech audio. The start 

and end of line cues were each a pair of tonal percussive (xylophone) notes 

played in ascending or descending order, respectively. The end of paragraph 

sound was a soft vibrophone note. When the user’s finger drifted below or above 

a line, a continuous audio tone would be played to indicate that proper corrective 

movement. A lower tone (300 Hz) was played to indicate downward corrective 

movement (i.e., the user was above the line). The pitch decreased at a rate of 

0.83Hz/pixel to a minimum of 200Hz at 127 pixels above the line. A higher tone 

(500 Hz) was used to indicate upward corrective movement (up to a maximum of 

600Hz with the same step value as before).  

 Haptic only. The haptic feedback consists of two finger-mounted haptic motors, 

one on top and one underneath the index finger (see Section 3.2). Based on pilot-

ing within the research team, the motors were placed on separate finger segments 

(phalanges) so that the signal from each was easily distinguishable. To cue the 

start of a line, two short pulses played on both motors, with the second pulse 

more intense than the first; the reverse pattern indicated the end of a line. For the 

end of a paragraph, each motor vibrated one at a time, which repeated for a total 

of four pulses. For vertical guidance, when the finger strayed too high, the motor 

underneath the finger vibrated, with the vibration increasing in intensity from a 

ID Age Gender 
Handed-

ness 
Level of Vision 

Years of 
Vision Loss 

Diagnosed Med. Condition Hearing Difficulties 

P1 64 Female Left Totally blind Since birth Retinopathy of prematurity  N/A 

P2 61 Female Left Totally blind Since birth Retinopathy of prematurity Slight hearing loss 

P3 48 Male Right Totally blind Since age 5 N/A N/A 

P4 43 Female Right No vision one eye, 
20/400 other eye 

30 years Glaucoma N/A 

Table 1: Background of the four user study participants. 



low perceivable value to maximum intensity, reached at 127 pixels above the 

line; below the line, the top motor vibrated instead (again with the maximum in-

tensity reached at 127 pixels).  

 Combined audio-haptic. This combined condition included all of the audio and 

haptic cues described above, allowing the two types of feedback to complement 

each other in case one was more salient for certain cues than the other.  

Procedure. The procedure took up to 90 minutes. For each feedback condition, the 

process was as follows. First, we demonstrated the feedback cues for the start/end of 

each line, end of paragraph, and vertical guidance. Next, we loaded a training article 

and guided the user through the first few lines. Participants then finished reading the 

training article at their own pace. Finally, a test article was loaded and participants 

were asked to read through the text as quickly and accurately as possible. While we 

provided manual guidance as necessary to help participants read the training article 

(e.g., adjusting their finger), no manual guidance was given during the test task. Four 

articles of approximately equivalent complexity were selected from Voice of America 

(a news organization), one for the training task and one to test each feedback condi-

tion; all articles had three paragraphs and on average 11.0 lines (SD=1.0) and 107.0 

words (SD=13.5). The order of presentation for the feedback conditions was random-

ized per participant, while the test articles were always shown in the same order. 

Questions on ease of use were asked after each condition and at the end of the study. 

Sessions were video recorded, and all touch events were logged. 

4.2 Findings 

We analyzed subjective responses to the feedback conditions, and user performance 

based on logged touch events. Figure 6 shows a sample visualization from one partic-

ipant (P1) completing the reading task in the audio-only and haptic-only conditions. 

Due to the small sample size, all findings in this section should be considered prelim-

inary, but point to the potential impacts of HandSight and tradeoffs of different feed-

back. 

   
(a) iPad test apparatus  (b) Participant 1 (c) Participant 3 

Figure 5: User study setup and test apparatus: (a) overview; (b-c) in use by two participants.. 



In terms of overall preference, three participants preferred audio-only feedback; see 

Table 2. Reasons included that they were more familiar with audio than haptic signals 

(P1, P3), and that it was easier to attend to text-to-speech plus audio than to text-to-

speech plus haptic (P4). P2’s most preferred condition was the combined feedback, 

because she liked to have audio cues for line tracing and haptic cues for start/end of 

line notifications. In contrast, haptic-only feedback was least preferred by three partic-

ipants. For example, concerned by the desensitization of her nerves, P1 expressed 

that: “…if your hands are cold, a real cold air-conditioned room, it’s [my tactile sen-

sation] not going to pick it up as well.” P4 also commented on being attuned to sound 

even in the haptic condition: “You don’t know if it’s the top or the bottom [vibrat-

ing]…It was the same noise, the same sound.” As shown in Figure 7, ease of use rat-

ings on specific components of the task mirrored overall preference rankings. 

 Rank 1 Rank 2 Rank 3 

P1 Audio Combined Haptic 
P2 Combined Audio Haptic 
P3 Audio Haptic Combined 

P4 Audio Combined Haptic 

Table 2: Overall preference rankings per partici-

pant. Audio feedback was the most positively 

received. 

 
Figure 7: Avg perceived ease of use of different text 

guidance attributes based on a 5-point scale (1-very 

difficult; 5-very easy). Error bars are stderr (N=4). 

 Braille Screen Reader Printed Text 

P1 3 3 3 
P2 3 5 5 
P3 4 4 4 

P4 5 5 5 

Table 3: Ratings comparing prior text reading 

experiences with HandSight; 1-much worse to 5-

much better. 

  
(a) Participant 1 finger trace (audio only condition) (b) Participant 1 finger trace (haptic only condition) 

Figure 6: Our iPad test apparatus allowed us to precisely track and measure finger movement. 

Example trace graphs for Participant 1 (P1) across the audio- and haptic-only conditions are shown 

above (green is on line; red indicates off-line and guidance provided). These traces were also used to 

calculate a range of performance measures. For example, the average overall time to read a line for P1 

took 11.3s (SD=3.9s) in the audio condition and 18.9s (SD=8.3s) in the haptic condition. The average 

time to find the beginning of the next line (traces not shown above for simplicity but were recorded) 

was 2.2s (SD=0.88s) in the audio condition and 2.7s (SD=2.4s) in the haptic condition. 
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Participants were also asked to compare their experience with HandSight to braille, 

screen readers and printed-text reading using 5-point scales (1-much worse to 5-much 

better). As shown in Table 3, HandSight was perceived to be at least as good (3) or 

better compared to each of the other reading activities. In general, all participants 

appreciated HandSight because it allowed them to become more independent when 

reading non-braille printed documents. For example, P3 stated, “It puts the blind 

reading on equal footing with rest of the society, because I am reading from the same 

reading material that others read, not just braille, which is limited to blind people 

only”. P1, who had experience with Optacon [26], Sara CE, and other printed-text 

scanning devices also commented on HandSight’s relative portability.  

In terms of performance, we examined four primary measures averaged across all 

lines per participant (Figure 8): average absolute vertical distance from the line center, 

time spent off the line (i.e., during which vertical feedback was on), time from start to 

end of a line, and time from the end of a line to the start of the next line. While it is 

difficult to generalize based on performance data from only four participants, audio-

only may offer a performance advantage over the other two conditions. Audio-only 

resulted in the lowest average vertical distance to the line center for all participants. 

Compared to the haptic-only condition, audio-only reduced the amount of time spent 

off the line by about half. It was also faster for all participants than haptic-only in 

moving from the end of a line to the start of the next line. A larger study is needed to 

confirm these findings and to better assess what impact the feedback conditions have 

on reading speed from start to end of a line. 

5 Discussion 

Though preliminary, our research contributes to the growing literature on wearables 

to improve access to the physical world for the blind (e.g., [12], [19], [21]). The de-

sign and initial algorithmic evaluation of our current HandSight prototype show the 

feasibility of our approach, and highlight important technical issues that we must 

consider. Additionally, our user study, which evaluated three finger-guidance ap-

    
Figure 8: Average performance data from the four user study participants across the three feedback 

conditions. While preliminary, these results suggest that audio-only feedback may be more effective 

than the other options tested. Error bars show standard error; (N=4). 
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proaches using a controlled setup (the iPad test apparatus), found that, in contrast to 

prior work [21], haptic feedback was the least preferred guidance condition. The 

pitch-controlled audio feedback condition was not only subjectively rated the most 

preferred but also appeared to improve user performance. Clearly, however, more 

work is needed. Below, we discuss our preliminary findings and opportunities for 

future work. 

Haptic Feedback. Though we have created 

many different types of finger-mounted haptic 

feedback in our lab, we tested only one in the 

user study: when the user moved above or 

below the current line, s/he would feel a con-

tinuous vibration proportional in strength to the 

distance from the vertical line center. We plan 

to experiment with form factors, haptic pat-

terns (e.g., intensity, frequency, rhythm, pressure), number of haptic devices on the 

finger, as well as the type of actuator itself (Figure 9). While our current haptic im-

plementation performed the worst of the feedback conditions, we expect that, ulti-

mately, some form of haptics will be necessary for notifications and finger guidance. 

Blind reading. Compared to current state-of-the-art reading approaches, our long-

term goals are to: (1) provide more intuitive and precise control over scanning and 

text-to-speech; (2) increase spatial understanding of the text layout; and (3) mitigate 

camera framing, focus, and lighting issues. Moreover, because pointing and reading 

are tightly coupled, finger-based interaction intrinsically supports advanced features 

such as rereading (for sighted readers, rereading occurs 10-15% of the time [63] and 

increases comprehension and retainment [64], [65]). We focused purely on reading 

simple document text, but we plan to investigate more complex layouts so the user 

can sweep their finger over a document and sense where pictures are located, head-

ings, and so on. We will explore a variety of documents (e.g., plain text, magazines, 

bills) and household objects (e.g., cans of food, cleaning supplies), and examine ques-

tions such as: How should feedback be provided to indicate where text/images are 

located? How should advanced features such as re-reading, excerpting, and annotating 

be supported, perhaps, through additional gestural input and voice notes?  

Computer Vision. Our preliminary algorithms are efficient and reasonably accurate, 

but there is much room for improvement. By incorporating constraints on lower-level 

text features we may be able to rectify vertical perspective effects and affine skew. 

We can also apply deblurring and image stabilization algorithms to improve the max-

imum reading speed the system is able to support. Robust and efficient document 

mosaicking and incorporation of prior knowledge will likely be a key component for 

supporting a wider range of reading tasks. 

    
Figure 9:  We are evaluating a range of 

micro-haptic actuators: (a) 10×2.7mm2 

vibro-discs; (b) 5×0.4 mm2  piezo discs; 

(c) 3×8 mm2  vibro-motors; (d) 0.08mm 

Flexinol wire (shape memory alloy).  

 



Multi-sensory approach. Currently, our prototype relies on only local information 

gleaned from the on-finger camera. However, in the future, we would like to combine 

camera streams from both a body-mounted camera (e.g., Orcam [12]) and a finger-

mounted camera. We expect the former could provide more global, holistic infor-

mation about a scene or text which could be used to guide the finger towards a target 

of interest or to explore the physical document’s layout. We could also use the infor-

mation to improve the performance of the OCR algorithms, by dynamically training 

the classifier on the page fonts and creating a generative model (e.g., [66]). 

6 Conclusion 

Our overarching vision is to transform how people with VI access visual information 

through touch. Though we focused specifically on reading, this workshop paper offers 

a first step toward providing a general platform for touch-vision applications. 
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