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Zero-shot Learning based Pedestrian Parsing

Xiyang Dai, Ruofei Du, Hao Zhou

University of Maryland, College Park

Abstract. Pedestrian parsing is a fundamental problem for action recog-
nition and behavior analysis. However, unlike indoor person parsing, it
remains a challenging problem due to varying luminance, occlusion and
clothing. In this paper, we propose a novel pedestrian parsing approach
based zero-shot learning. Firstly, we learn an transferred model that
extracts clothing parsing attributes from pedestrian images. Then we
combine the attributes into higher level human parts, Finally we apply a
seed-based segmentation approach to get the parsing results. We test the
proposed approach on the Penne-Fudan and PPSS dataset, and achieve
reasonablly good results.

Keywords: pedestrian parsing, zero-shot learning, segmentation

1 Introduction

Outdoor pedestrian parsing has significant applications in video surveillance, ac-
tion recognition and behavior analysis. Given a low-resolution pedestrian image
from surveillance camera, our target is to parse the image into separate parts,
such as head, hair, upper-body, etc. It is challenging due to the pose differences,
customized clothing, varying viewpoints and complicated occlusions. Previous
studies mainly focused on using templates[1][2], Bayesian network[3][4] or deep
neural network[5] to parse pedestrians. In this project, we propose an novel
approach to transfer clothing parsing models into pedestrian parsing by apply-
ing category constrains and seed-based segmentation. We apply our method on
Penn-Fudan[6] and PPSS[5] datasets and compare our results with state-of-the-
art approaches[7][2][5].

The key idea of our approach is to learn an transferred model that deploys
clothing parsing resources into pedestrian parsing problem. To achieve this goal,
we first refine the existing clothing parsing model to fit low-resolution pedes-
trian images. Afterwards, we mine the hierarchy relationships between clothing
attributes and pedestrian body parts. Finally, we merge clothing segments into
body parts using seed-based segmentation method. Meanwhile, we also need to
consider the following challenges to implement such an approach:

– The current clothing parsing algorithm is trained on fashion dataset, it is
quite different from the dataset we will use for pedestrian parsing. For exam-
ple, the images in the fashion dataset are usually clear and in high resolution,
however, those for pedestrian parsing are generally blurred and in low reso-
lution.
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2 Xiyang Dai, Ruofei Du, Hao Zhou

– There are more pose variants in pedestrian parsing dataset. People in the
fashion dataset are usually in a “model” pose, but people in pedestrian
parsing dataset usually have varying poses.

All these challenges may lead to inaccurate parsing of pedestrians. We examine
how the differences affect the pedestrian parsing through experiments and make
our approach robust to inaccurate clothing parsing.

The major contributions of our approach are as following:

– To our best knowledge, this is the first zero-shot learning approach to parse
outdoor pedestrians.

– Further experiments show our approach is robust to weak attribute classi-
fiers.

– Evaluation on two challenging datasets demonstrates reasonable performance
compared to the state-of-the-art methods.

Fig. 1. The architecture of our approach.

2 Related Works

We review the recent works on pedestrian parsing and clothing parsing [4, 1, 3,
2, 5, 8–13].

Pedestrian parsing. Current studies generally focus on two kinds of ap-
proaches: template matching and probability inference. Bourdev, L. et al. [1]
proposed an approach to find common body-part templates, named as poselets.
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Zero-shot Learning based Pedestrian Parsing 3

Then the parsing problem was simplified as a problem to match different pose-
lets. Rauschert, I. et al [2] modeled human body as a tree-structured graph and
matched this graph with real images using Bayesian inference. Bo, Y. et al. [3]
proposed a bottom-up approach that built a hierarchical model of pedestrian
parts based on appearance and shape features. Eslami, S. et al. [4] introduced
the Shape Boltzmann Machine (SBM) to pedestrian parsing problem and pro-
posed a multinomial SBM that could capture local and global sharp statistics.
Recently, Luo, P. et al. [5] applied deep learning on pedestrian parsing problem
with a modified deep decompositional network (DDN) and achieved reasonable
performance. The most similar work with this proposal is the very recent paper
by Dong, J. et al [8]. In that paper, they tried to build the hierarchical compo-
sition of semantic parts under an And-Or graph framework. However, different
with this proposal, their reasoning was only limited to body parts and didn’t
take the advantages of existing clothing parsing model and category cues.

Clothing parsing. Clothing parsing was first proposed by Yamaguchi, K.
et al.[11] in 2012 and applied into fashion photographs. They trained a MRF-
based image parsing model on clothing parsing problem using their newly col-
lected fashion dataset. Later, in their follow-up paper [9], they further improved
the performance using a retrieval-based model that combined pre-trained global
parsing models of clothing items and local models of clothing items learned on
the fly from retrieved examples. Kalantidis, Y. et al. [13] extended the clothing
parsing problem to unconstrained settings by using a probabilistic pose estima-
tor. Recently, Yang, W. et al. [12] proposed a co-parsing approach that jointly
parsed a batch of clothing images and achieved better result.

3 Proposed Approach

3.1 Attribute Learning

Similar to [11], we create a pipeline to train our clothing attribute classifiers. We
give a brief description of each step in this section.

Superpixel generation: Following recent work [14], we generate an over-
segmented set of superpixels of each image. The number of superpixels we gen-
erated for each image is usually less than one thousand regions. This allows us
to train our attribute classifier on these superpixels and further reduce the scale
of learning problem significantly.

Pose estimation: Pose estimation plays an important role in the pipeline. It
provides a necessary position prior for our attribute classifier and largely affects
the accuracies of our attribute classifiers if it generates wrong poses. Hence, we
adapt the widely-used implementation [15] to generate our initial pose. Given an
image I, body part pi and the types ti of the body part, we define the following
score function to evaluate the performance of the pose:

S(I, p, t) =
∑
i

wi(ti)φ(I, pi) +
∑
i,j

wi,j(ti, tj)ψ(pi, pj) + C(t) (1)
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4 Xiyang Dai, Ruofei Du, Hao Zhou

The first summation in equation 1 models the potential of appearance for
each part, where φ(I, pi) is the HOG feature vector[16] for a given part pi in the
image I. The second summation in equation 1 models potential of spatial location
of each pair of parts. ψ(pi, pj) = [dx dx2 dy dy2]T evaluates the position
relationship between two parts where dx = xi − xj and dy = yi − yj are the
relative positions of the two parts. We also apply a third term C(t) to evaluates
the configuration of parts C(t) =

∑
i bi(ti) +

∑
i,j bi,j(ti, tj) by counting the

co-occurrence of different types of parts. Then, the final labeling results can be
inferred by maximizing the score function in equation 1 over p and t. Meanwhile,
the learning process can be implemented in a supervised framework. Assume we
have labeled positive samples z = {I, p, t} generated by manually annotation
and negative samples z′ = {I ′, p′, t′} generated by random sampling, the learning
process can be modeled by minimizing a structured prediction objective function:

min
β,ξi

1

2
||β||2 + C

∑
i

ξi

s.t. β · Φ(xi, zi) ≥ 1− ξi
β · Φ(xi, z

′

i) ≤ −1 + ξi

(2)

where β is the model weight parameter, Φ(x, z) is the structure expansion func-
tion and ξ is the slack variable.

Attribute classification: Given a superpixel of image, we extract the fol-
lowing features:

– Normalized color histgrams with RGB and Lab channels.
– Responses of Gabor features.
– Normalized relative position compared to the image size.
– Normalized relative position compared to the pose parts.

Then we can learn a regression model for each clothing attribute using logistic
regression with L2 regularization:

min
w

1

2
wTw + C

∑
i

ξ(w;xi, yi) (3)

where the loss function is log(1 + e−yiw
T xi).

3.2 Category Mining

The purpose of category mining is to find the corresponding relationships be-
tween clothing attributes and body parts. This is a non-trivial question because
of the complex inter-relationships between clothing attributes and body parts
(e.g. a short jacket may belong to upper-body but a long jacket may partially
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Zero-shot Learning based Pedestrian Parsing 5

belong to lower-body either) and inner-relationships within clothing attributes
(e.g. a man with jeans may be rarely possible to wear short at the same time).

Naive Approach: To fast implement this part, we first carry out category
mining manually. We parse the human into eight parts: hair, head, upper-body,
lower-body, arm, leg, shoe and background. Our clothing parsing algorithm can
give us 56 attributes, however, some of the attributes are ambiguous to catego-
rize, such as “hat”, “sunglasses”, “accessories” and “belt”. As these categories
are tiny and not very important, we discarded those attributes. A special at-
tribute is “dress” which contains both upper-body part and lower-body part, we
cannot discarded this category since it covers a large part of the body which is
important for human parsing. To deal with the ambiguity, we use a soft assign-
ment to assign “dress” to upper-body and lower body. We treat the dress as 70%
to be a upper-body and 30% to be a lower-body. Since we only have attribute
“skin” in our attribute classifiers, we need to divide it into category “face”, “arm”
and “leg”. We simply divide the skin region to those three categories based on
output of the pose estimation results. Table 1 shows some examples of how we
classify attributes into eight categories we use.

Table 1. Example attributes belonging to each category.

head, arm, leg hair upper-body lower-body shoe background

skin hair tights, blazer,
t-shirt,coat,
blouse,
jacket,sweater,jeans,
...

shorts,skirt,
pants, leg-
gings, ...

shoes,
boots,heels,
...

null, bag, wal-
let, ...

However, we find that manually classifying the clothing attributes into cate-
gories doesn’t work well. To make our attribute more robust, we further include
some priors and remove outliers.

Prior information: To collaborate with responses from the clothing at-
tributes, we extract spatial prior from the dataset as weights and further apply
them when we merge the attributes. For each clothing attribute, the spatial prior
can be calculated by computing the empirical probability of each pixel in our
training dataset. Figure 2 shows the visualization of the prior information used
in our merging method.

Outliers removal: To remove noisy outlier responses from attribute clas-
sifiers, we fit Gaussian distribution based on the relative location and response
strength. Then we filter out outliers that are three times variance away from the
mean. In this way, we can further eliminate the noises generated along with our
attribute classifiers.
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6 Xiyang Dai, Ruofei Du, Hao Zhou

null skin hair shoes bag dress belt boots top skirt blouse shorts hat pants

accessories sunglasses tights shirt jeans blazer jacket t−shirt cardigan necklace heels socks coat purse

bracelet leggings stockings wedges vest sweater clogs scarf jumper watch glasses sandals gloves ring

earrings wallet loafers flats tie cape bra suit romper sneakers pumps sweatshirt intimate bodysuit

Fig. 2. The per-pixel frequency counts of the clothing attributes in the dataset (sorted
in descending order).

3.3 Seed-based segmentation

In previous stage, we have generated the probability distribution according to
each higher-level category including hair, head, upper-body, down-body, leg, arm
and shoes. Then we generate seeds using an iterative algorithm. Based on both
foreground and background seeds, we adapted a multi-level banded graph-cut to
segment each category. Finally, we combine and refine multi-label segmentation
by banded graph-cut. This problem is formulated as follows:

Given an image I = {pi}, our goal is to assign each pixel pi of I with a
segmentation label l ∈ L, here L = {0, 1, .., N} includes all the higher-level
categories we discussed above. There are two steps for this multi-label problem:
(1) For each category label l ∈ L, use banded multi-level graph-cut method to
label the image as l and ¬l, thus, we have N binary images. (2) Combine these
N binary images together to get the multi-labeled results.

Binary segmentation: We first consider the binary label problem, for ex-
ample, given the combined priors of upper-body, we aim to label I to be upper-
body and non-upper-body. To get some prior information, we need to generate
seeds for this category. Since category mining can only provide the probability
that each pixel belongs to an attribute, we need to figure out a way to select
seeds based on these probabilities for segmentation. Manually selecting a thresh-
old to select seeds for all the images cannot work well due to the large variance
and noise from the classifiers. Inspired by [17], we proposed an adaptive method
for seed-based binary segmentation. Let Pl (l ∈ L) represent the probability
distribution image from each category mining result. Each pixel of Pl represents
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Zero-shot Learning based Pedestrian Parsing 7

the probability that this pixel belongs to category l. We use an iterative way to
make use of the probability image to do segmentation. At the ith step, the seeds
are selected as:

Sf = {(x, y)|Pl(x, y) ≥ fi} (4)

Sb = {(x, y)|Pl(x, y) ≤ bi} (5)

where Sf and Sb represent the seeds for foreground (labeled as l) and back-
ground (labeled as ¬l) respectively. fi and bi are two thresholds. By making
use of these two seeds, we segment the image into three parts: foreground(Fl),
background(Bl) and unknown(Ul). To get Fl, we use Sf as seeds for Fl and
randomly sample points from rest regions as seeds for ¬F . By applying graph
cuts, we segment image into Fl and ¬Fl region. We apply similar technique to
segment the image into Bl and ¬Bl. Then Ul = ¬Fl ∩ ¬Bl. If Fl ∩ Bl 6= ∅, we
stop and report fi and bi, otherwise, we decrease fi and increase bi by a small
number and repeat the process again. After we find the proper fi and bi, then
we apply graph cuts on the entire image making use of the seeds Sf and Sb.

After we get enough seeds for binary segmentation, we resize the image to
K coarse levels for banded graph-cut algorithm using a down-sampling of 2 and
K = 3 as [18]. Firstly, we solve the graph cut on the coarsest level (K) graph.
Then we expanded the segmentation result with a narrow band (usually ±2
pixels) which bounds the candidate boundary of the foreground. We then solve
graph-cut on banded graph at level K−1. The bands outer layer would be use as
background seeds while the bands lower layer would be use as foreground seeds.
In this way, the seeds are growing gradually to different coarse levels. We apply
this method for each of the labels to get N binary segmented images Rl, l ∈ L
as illustrated in Algorithm 1.

Algorithm 1 Iterative and adaptive algorithm for binary segmentation.

for each label l ∈ L do
Set the initial foreground, background and two threshold Fl = ∅, Bl = ∅
Set the initial threshold fl = 1, bl = 0
while Fl ∩Bl = ∅ do

Update the thresholds fi = fi − δ; bi = bi + δ
Update the seeds Sf = {(x, y)|Pl(x, y) ≥ fi}, Sb = {(x, y)|Pl(x, y) ≤ bi}
Compute segmentation result Fl using Sf by graph-cut
Compute segmentation result Bl using Sb by graph-cut

end while
Use the final seeds Sf , FSb for banded graph-cut segmentation.
Rl = Segmentation result from the down-sampled image by a factor of 2K

for each level k ∈ K − 1, ..., 1 do
Expand the result with a narrow band ±2 pixels ∆k

Rl = Rl∪ Segmentation by solving graph-cut on the banded graph ∆k

end for
Return the segmentation result Rl.

end for



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#***
ECCV

#***

8 Xiyang Dai, Ruofei Du, Hao Zhou

Combining binary segmentation: After we get the n binary segmented
images, we need to combine them together to get the final multi-label image.
Since the n binary segmented images are independently got, it is quite likely
that a pixel will have multiple labels. For example, a pixel may be labeled as
“upper-body” and “face”. Inspired by the method proposed in [18], we use the
banded graph-cut to merge two segmented binary images Ri and Rj .

Algorithm 2 Combining multiple lables.

ob = empty, ba = fullimage;
for each label i do
ba = ba ∩ bai
For each label k existing in ob, get r = obi ∩ obk, extended it with ri and rk, do
binary segmentation.
Refine obk in ob and obi
ob = ob ∪ obi

end for

obj

obi

r
ri

rj

Fig. 3. Illustration of combining multiple labels.

We know that Bi is a binary segmented images, it has two regions obi and bai
representing object region and background region respectively. Let C represent
the combination result of two binary segmented images Bi and Bj respectively,
then we know that C has three regions: region labeled as i, region labeled as
j and the background region. We use ci, cj and cback to represnet these three
regions. Thus:

obi ∩ baj ⊂ ci (6)

obj ∩ bai ⊂ cj (7)

bai ∩ baj ⊂ cback, (8)
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Zero-shot Learning based Pedestrian Parsing 9

however, region r = obi ∩ obj cannot be decided. We treat this region r as the
initial band and extend it.

Similar to [18], we extended r to include ri and rj which are two narrow
bands next to r from obi and obj respectively (shown in Figure 3. Then we do
binary segmentation again on region r ∪ ri ∪ rj . Pixels from ri and rj will be
treated as seeds for label i and label j. The process of combining all the labels
is shown in Algorithm 2.

4 Experiments

4.1 Attribute Classifiers
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Fig. 4. Illustration of combining multiple labels.

We train our attribute classifiers on Fashionista dataset introduced by recent
work[11]. This dataset contains 685 pixel-wise annotated samples with 53 dif-
ferent clothing items and 3 additional labels (hair, skin and null/background).
The average number of samples for each class is around 50. However, there are
20 classes with less than 10 samples, which make these classes unreliable. The
statistic of this dataset is shown in Figure 4. We randomly select two thirds (456
samples) of the samples as training data and use rest of them as testing data.
The confusion matrix that shows the overall accuracies of our attribute classifiers
is shown in Figure 5. Table 2 shows the attributes with top 30 accuracies. We
notice that the performance of our attribute classifiers is not promosing. But our
following experiments show that our approach is robust to these week attribute
classifiers.
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Fig. 5. Illustration of combining multiple labels.

4.2 Testing Datasets

We evaluate our approach on two challenging datasets:
Penn-Fudan pedestrians[6]: This dataset was originally used in pedestrian

detection but recently deployed to pedestrian parsing problem. It contains 169
clear images of different pedestrians without occlusion. All images are annotated
with 7 different body parts (hair, face, upper-cloth, lower-cloth, shoes, legs and
arms);

PPSS[5]: This dataset contains 3673 images from different multiple surveil-
lance scenes and all images are provided with groundtruth annotations, which
are similar to Penn-Fudan dataset. Most of the images are blurred and over
half of the images (2064) are occluded, which makes this dataset even more
challenging.

4.3 Comparison with state-of-the-art

Penn-Fudan dataset: we compare our experimental resutls with [7] [2] and [5].
We show the quantitative results in Table 4. Here “ub” means upper-clothes, “lb”
means lower-clothes, “oa1” is the overall precision which is computed directly
as the mean of precision of all the parts, “oa2” is the overall precision computed
as the weighted mean of the precision of all the other parts, the weight is the
number of pixels for each part. We find that our proposed method is comparable
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Class Accuracy Class Accuracy Class Accuracy

’bg’ 0.929 ’sunglasses’ 0.567 ’stockings’ 0.4189
’bracelet’ 0.8182 ’shoes’ 0.5234 ’blazer’ 0.3310
’glasses’ 0.7803 ’skin’ 0.4855 ’scarf’ 0.3267
’leggings’ 0.7618 ’tights’ 0.4718 ’bag’ 0.3092
’belt’ 0.734 ’hair’ 0.4628 ’watch’ 0.2941
’shorts’ 0.7104 ’pants’ 0.4567 ’jacket’ 0.2857
’necklace’ 0.6918 ’accessories’ 0.456 ’t-shirt’ 0.2846
’socks’ 0.6657 ’jeans’ 0.4445 ’wedges’ 0.2805
’earrings’ 0.6544 ’boots’ 0.4251 ’cardigan’ 0.2744
’hat’ 0.6117 ’heels 0.4214 ’vest’ 0.2548

Table 2. Attribute classifiers with top 30 accuracies.

Table 3. Our full results on Penn-Fudan dataset

bg ub lb shoe face arm leg hair oa1 oa2

Our 87.1% 64.9% 56.2% 36.9% 71.2% 43.1% 13.2% 39.8% 59.9% 73.1%

to some of the state-of-the-art methods. We find that generally, we get better
results for “face” and “arm”, this is because the clothing parsing method can
give us relatively good priors on face and arms since a lot of images in the
training data has skins and the appearances of these parts do not change much.
Moreover, as we train our clothing parsing model on a high resolution image,
the training results may be accurate compared with other method who trained
their method on Penn-Fudan dataset. However, due to large variations of clothes
and hair style, the parsing results for those parts are not as good as the state-of-
the-art method. Since for these regions, our testing dataset is about pedestrian
images instead of fashion images, the style of clothing and hair style may be
quite different. In Table 3, we show the full parsing results of our method. Our
method is the only one that can parse shoes and our accuracy for shoe label is
36.0% which is quite good.

We show some parsing results in Figure 6 and Figure 7. We find that visually,
our results look very promising. An interesting observation is that our method
can even do multi-pedestrian parsing as shown in the third row of Figure 7.

Table 4. Compare with state-of-the-art for Penn-Fudan

ub lb face arm leg hair oa1 oa2

Our 64.9% 56.2% 71.2% 43.1% 32.0% 39.8% 51.2% 56.4%

SBP[7] 74.8% 71.2% 60.8% 26.1% 42.0% 44.9% 53.3% -

P & S[2] 75.2% 73% 42% 24.7% 46.6% 40.0% 50.4% -

DDN [5] 78.1% 75.0% 54.2% 25.3% 49.8% 44.7% 54.7% -

DL [5] 77.5% 75.3% 57.1% 27.4% 52.3% 43.2% 56.2% -
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Table 5. Our full results on ppss dataset

bg ub lb shoe face arm leg hair oa1 oa2

Our 92.89% 52.3% 56.1% 2.4% 50.2% 15.9% 0.0% 25.0% 36.8% 77.0%

Table 6. Compare with state-of-the-art on ppss

ub lb face arm leg hair oa1 oa2

Our 52.3% 56.1% 50.1% 16.0% 02.5% 25.0% 35.4% 49.5%

DL [5] 68.4% 46.1% 29.1% 10.6% 12.9% 22.0% 30.0% -

DDN [5] 68.4% 61.7% 44.1% 17.0% 23.8% 35.5% 41.8% -

PPSS dataset: we compare our results with [5]. We show the quantita-
tive results in Table 6. Similar to the performance on Penn-Fudan dataset, our
method performs relatively good on face and arms and performs better than only
using decomposition layer method mentioned in [5]. However, the performance
of our method is worse than the full model proposed in [5]. One reason is that
PPSS dataset contains a lot of occlusions, the Deep Decomposition Network in
[5] is proposed to deal with occlusions, however we did not spend much effort on
occlusion in our method. On the other hand, our method is based on zero-shot
learning, the training data we use is Fashionista dataset proposed in [11], in
which all the images are in high resolution, images in PPSS dataset, however,
are in very low resolution. We also show our full parsing results in Table 5, we
find that we have 0% on leg label, this is because the people in PPSS dataset all
wear long pants, there is actually no leg label in the dataset. In general, although
this dataset is difficult, our method can give a reasonable result.

Some parsing results in PPSS date set are shown in Figure 8 and Figure 9. As
shown in the fourth row of Figure 9, when pedestrian have some wired poses, the
results we get are quite bad. The reason is that our pose estimator cannot give
an accurate pose esitmation if the pose does not appear in the training dataset.

5 Conclusion

In this project, we propose a zero-shot learning approach to parse pedestrian in
outdoor scene. We train multiple attribute classifiers by taking the advantage of
current clothing parsing resources. Then we merge clothing attribute responses
into body-part category seeds using prior information and apply multi-label seed-
based segmentation to get the final parsing result. Further experiments show
that our approach is robust to the weak attribute classifiers and demonstrate
comparable performance on two state-of-the-art testing datasets.

6 Future Work

Our current attribute classifier heavily depends on the initial pose generated
by separated DPM based pose estimator. However, such pose estimator does
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not perform well in outdoor unrestricted configuration due to the large varieties
of poses, scales and lights. The interesting followup is how to design attribute
classifiers independent with poses. Hence, we plan to design an interactive loop
to train and refine pose estimator along with attribute classifier:

– Initially train attribute classifiers without pose.
– Estimate pose from initial segmentation result.
– Retrain attribute classifiers with pose.
– Refine pose from new segmentation result

Meanwhile, we will also explore more advanced category modeling methods that
may better generate the body-part seeds. We expect to further improve the
performance of our approach and make it competitive with state-of-the-art ap-
proaches.
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(a) (b) (c) (d)

Fig. 6. Some good results. (a) shows
the source image. (b) shows the ground
truth label. (c) shows the results from
[7]. (d) shows the proposed method.

(a) (b) (c) (d)

Fig. 7. Some bad results.(a) shows the
source image. (b) shows the ground
truth label. (c) shows the results from
[7]. (d) shows the proposed method.
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(a) (b) (c)

Fig. 8. Some good results. (a) shows
the source image. (b) shows the ground
truth label. (c) shows the proposed
method.

(a) (b) (c)

Fig. 9. Some bad results.(a) shows the
source image. (b) shows the ground
truth label. (c) shows the proposed
method.
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